Quantifying uncertainties in soil carbon responses to changes in global mean temperature and precipitation

Soil organic carbon (SOC) is the largest carbon pool in terrestrial ecosystems and may play a key role in biospheric feedbacks with elevated atmospheric carbon dioxide (CO2) in a warmer future world. We examined the simulation results of seven terrestrial biome models when forced with climate projec...

Full description

Bibliographic Details
Published in:Earth System Dynamics
Main Authors: Nishina, K., Ito, A., Beerling, D. J., Cadule, P., Ciais, P., Clark, D. B., Falloon, P., Friend, A. D., Kahana, R., Kato, E., Keribin, R., Lucht, W., Lomas, M., Rademacher, T. T., Pavlick, R., Schaphoff, S., Vuichard, N., Warszawaski, L., Yokohata, T.
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2014
Subjects:
Online Access:https://doi.org/10.5194/esd-5-197-2014
https://noa.gwlb.de/receive/cop_mods_00020314
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00020269/esd-5-197-2014.pdf
https://esd.copernicus.org/articles/5/197/2014/esd-5-197-2014.pdf
id ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00020314
record_format openpolar
spelling ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00020314 2023-05-15T15:17:28+02:00 Quantifying uncertainties in soil carbon responses to changes in global mean temperature and precipitation Nishina, K. Ito, A. Beerling, D. J. Cadule, P. Ciais, P. Clark, D. B. Falloon, P. Friend, A. D. Kahana, R. Kato, E. Keribin, R. Lucht, W. Lomas, M. Rademacher, T. T. Pavlick, R. Schaphoff, S. Vuichard, N. Warszawaski, L. Yokohata, T. 2014-04 electronic https://doi.org/10.5194/esd-5-197-2014 https://noa.gwlb.de/receive/cop_mods_00020314 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00020269/esd-5-197-2014.pdf https://esd.copernicus.org/articles/5/197/2014/esd-5-197-2014.pdf eng eng Copernicus Publications Earth System Dynamics -- http://www.earth-syst-dynam.net/ -- http://www.bibliothek.uni-regensburg.de/ezeit/?2578793 -- 2190-4987 https://doi.org/10.5194/esd-5-197-2014 https://noa.gwlb.de/receive/cop_mods_00020314 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00020269/esd-5-197-2014.pdf https://esd.copernicus.org/articles/5/197/2014/esd-5-197-2014.pdf uneingeschränkt info:eu-repo/semantics/openAccess article Verlagsveröffentlichung article Text doc-type:article 2014 ftnonlinearchiv https://doi.org/10.5194/esd-5-197-2014 2022-02-08T22:52:12Z Soil organic carbon (SOC) is the largest carbon pool in terrestrial ecosystems and may play a key role in biospheric feedbacks with elevated atmospheric carbon dioxide (CO2) in a warmer future world. We examined the simulation results of seven terrestrial biome models when forced with climate projections from four representative-concentration-pathways (RCPs)-based atmospheric concentration scenarios. The goal was to specify calculated uncertainty in global SOC stock projections from global and regional perspectives and give insight to the improvement of SOC-relevant processes in biome models. SOC stocks among the biome models varied from 1090 to 2650 Pg C even in historical periods (ca. 2000). In a higher forcing scenario (i.e., RCP8.5), inconsistent estimates of impact on the total SOC (2099–2000) were obtained from different biome model simulations, ranging from a net sink of 347 Pg C to a net source of 122 Pg C. In all models, the increasing atmospheric CO2 concentration in the RCP8.5 scenario considerably contributed to carbon accumulation in SOC. However, magnitudes varied from 93 to 264 Pg C by the end of the 21st century across biome models. Using the time-series data of total global SOC simulated by each biome model, we analyzed the sensitivity of the global SOC stock to global mean temperature and global precipitation anomalies (ΔT and ΔP respectively) in each biome model using a state-space model. This analysis suggests that ΔT explained global SOC stock changes in most models with a resolution of 1–2 °C, and the magnitude of global SOC decomposition from a 2 °C rise ranged from almost 0 to 3.53 Pg C yr−1 among the biome models. However, ΔP had a negligible impact on change in the global SOC changes. Spatial heterogeneity was evident and inconsistent among the biome models, especially in boreal to arctic regions. Our study reveals considerable climate uncertainty in SOC decomposition responses to climate and CO2 change among biome models. Further research is required to improve our ability to estimate biospheric feedbacks through both SOC-relevant and vegetation-relevant processes. Article in Journal/Newspaper Arctic Niedersächsisches Online-Archiv NOA Arctic Earth System Dynamics 5 1 197 209
institution Open Polar
collection Niedersächsisches Online-Archiv NOA
op_collection_id ftnonlinearchiv
language English
topic article
Verlagsveröffentlichung
spellingShingle article
Verlagsveröffentlichung
Nishina, K.
Ito, A.
Beerling, D. J.
Cadule, P.
Ciais, P.
Clark, D. B.
Falloon, P.
Friend, A. D.
Kahana, R.
Kato, E.
Keribin, R.
Lucht, W.
Lomas, M.
Rademacher, T. T.
Pavlick, R.
Schaphoff, S.
Vuichard, N.
Warszawaski, L.
Yokohata, T.
Quantifying uncertainties in soil carbon responses to changes in global mean temperature and precipitation
topic_facet article
Verlagsveröffentlichung
description Soil organic carbon (SOC) is the largest carbon pool in terrestrial ecosystems and may play a key role in biospheric feedbacks with elevated atmospheric carbon dioxide (CO2) in a warmer future world. We examined the simulation results of seven terrestrial biome models when forced with climate projections from four representative-concentration-pathways (RCPs)-based atmospheric concentration scenarios. The goal was to specify calculated uncertainty in global SOC stock projections from global and regional perspectives and give insight to the improvement of SOC-relevant processes in biome models. SOC stocks among the biome models varied from 1090 to 2650 Pg C even in historical periods (ca. 2000). In a higher forcing scenario (i.e., RCP8.5), inconsistent estimates of impact on the total SOC (2099–2000) were obtained from different biome model simulations, ranging from a net sink of 347 Pg C to a net source of 122 Pg C. In all models, the increasing atmospheric CO2 concentration in the RCP8.5 scenario considerably contributed to carbon accumulation in SOC. However, magnitudes varied from 93 to 264 Pg C by the end of the 21st century across biome models. Using the time-series data of total global SOC simulated by each biome model, we analyzed the sensitivity of the global SOC stock to global mean temperature and global precipitation anomalies (ΔT and ΔP respectively) in each biome model using a state-space model. This analysis suggests that ΔT explained global SOC stock changes in most models with a resolution of 1–2 °C, and the magnitude of global SOC decomposition from a 2 °C rise ranged from almost 0 to 3.53 Pg C yr−1 among the biome models. However, ΔP had a negligible impact on change in the global SOC changes. Spatial heterogeneity was evident and inconsistent among the biome models, especially in boreal to arctic regions. Our study reveals considerable climate uncertainty in SOC decomposition responses to climate and CO2 change among biome models. Further research is required to improve our ability to estimate biospheric feedbacks through both SOC-relevant and vegetation-relevant processes.
format Article in Journal/Newspaper
author Nishina, K.
Ito, A.
Beerling, D. J.
Cadule, P.
Ciais, P.
Clark, D. B.
Falloon, P.
Friend, A. D.
Kahana, R.
Kato, E.
Keribin, R.
Lucht, W.
Lomas, M.
Rademacher, T. T.
Pavlick, R.
Schaphoff, S.
Vuichard, N.
Warszawaski, L.
Yokohata, T.
author_facet Nishina, K.
Ito, A.
Beerling, D. J.
Cadule, P.
Ciais, P.
Clark, D. B.
Falloon, P.
Friend, A. D.
Kahana, R.
Kato, E.
Keribin, R.
Lucht, W.
Lomas, M.
Rademacher, T. T.
Pavlick, R.
Schaphoff, S.
Vuichard, N.
Warszawaski, L.
Yokohata, T.
author_sort Nishina, K.
title Quantifying uncertainties in soil carbon responses to changes in global mean temperature and precipitation
title_short Quantifying uncertainties in soil carbon responses to changes in global mean temperature and precipitation
title_full Quantifying uncertainties in soil carbon responses to changes in global mean temperature and precipitation
title_fullStr Quantifying uncertainties in soil carbon responses to changes in global mean temperature and precipitation
title_full_unstemmed Quantifying uncertainties in soil carbon responses to changes in global mean temperature and precipitation
title_sort quantifying uncertainties in soil carbon responses to changes in global mean temperature and precipitation
publisher Copernicus Publications
publishDate 2014
url https://doi.org/10.5194/esd-5-197-2014
https://noa.gwlb.de/receive/cop_mods_00020314
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00020269/esd-5-197-2014.pdf
https://esd.copernicus.org/articles/5/197/2014/esd-5-197-2014.pdf
geographic Arctic
geographic_facet Arctic
genre Arctic
genre_facet Arctic
op_relation Earth System Dynamics -- http://www.earth-syst-dynam.net/ -- http://www.bibliothek.uni-regensburg.de/ezeit/?2578793 -- 2190-4987
https://doi.org/10.5194/esd-5-197-2014
https://noa.gwlb.de/receive/cop_mods_00020314
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00020269/esd-5-197-2014.pdf
https://esd.copernicus.org/articles/5/197/2014/esd-5-197-2014.pdf
op_rights uneingeschränkt
info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.5194/esd-5-197-2014
container_title Earth System Dynamics
container_volume 5
container_issue 1
container_start_page 197
op_container_end_page 209
_version_ 1766347707751858176