Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system

A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequ...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Ciais, P., Dolman, A. J., Bombelli, A., Duren, R., Peregon, A., Rayner, P. J., Miller, C., Gobron, N., Kinderman, G., Marland, G., Gruber, N., Chevallier, F., Andres, R. J., Balsamo, G., Bopp, L., Bréon, F.-M., Broquet, G., Dargaville, R., Battin, T. J., Borges, A., Bovensmann, H., Buchwitz, M., Butler, J., Canadell, J. G., Cook, R. B., DeFries, R., Engelen, R., Gurney, K. R., Heinze, C., Heimann, M., Held, A., Henry, M., Law, B., Luyssaert, S., Miller, J., Moriyama, T., Moulin, C., Myneni, R. B., Nussli, C., Obersteiner, M., Ojima, D., Pan, Y., Paris, J.-D., Piao, S. L., Poulter, B., Plummer, S., Quegan, S., Raymond, P., Reichstein, M., Rivier, L., Sabine, C., Schimel, D., Tarasova, O., Valentini, R., Wang, R., van der Werf, G., Wickland, D., Williams, M., Zehner, C.
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2014
Subjects:
Online Access:https://doi.org/10.5194/bg-11-3547-2014
https://noa.gwlb.de/receive/cop_mods_00019584
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00019539/bg-11-3547-2014.pdf
https://bg.copernicus.org/articles/11/3547/2014/bg-11-3547-2014.pdf
id ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00019584
record_format openpolar
institution Open Polar
collection Niedersächsisches Online-Archiv NOA
op_collection_id ftnonlinearchiv
language English
topic article
Verlagsveröffentlichung
spellingShingle article
Verlagsveröffentlichung
Ciais, P.
Dolman, A. J.
Bombelli, A.
Duren, R.
Peregon, A.
Rayner, P. J.
Miller, C.
Gobron, N.
Kinderman, G.
Marland, G.
Gruber, N.
Chevallier, F.
Andres, R. J.
Balsamo, G.
Bopp, L.
Bréon, F.-M.
Broquet, G.
Dargaville, R.
Battin, T. J.
Borges, A.
Bovensmann, H.
Buchwitz, M.
Butler, J.
Canadell, J. G.
Cook, R. B.
DeFries, R.
Engelen, R.
Gurney, K. R.
Heinze, C.
Heimann, M.
Held, A.
Henry, M.
Law, B.
Luyssaert, S.
Miller, J.
Moriyama, T.
Moulin, C.
Myneni, R. B.
Nussli, C.
Obersteiner, M.
Ojima, D.
Pan, Y.
Paris, J.-D.
Piao, S. L.
Poulter, B.
Plummer, S.
Quegan, S.
Raymond, P.
Reichstein, M.
Rivier, L.
Sabine, C.
Schimel, D.
Tarasova, O.
Valentini, R.
Wang, R.
van der Werf, G.
Wickland, D.
Williams, M.
Zehner, C.
Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system
topic_facet article
Verlagsveröffentlichung
description A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The paper is addressed to scientists, policymakers, and funding agencies who need to have a global picture of the current state of the (diverse) carbon observations. We identify the current state of carbon observations, and the needs and notional requirements for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion of the ground-based observation networks required to reach the high spatial resolution for CO2 and CH4 fluxes, and for carbon stocks for addressing policy-relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over areas such as the southern oceans, tropical forests, and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote-sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground-based data. Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in situ and remotely sensed data at much higher resolution and density than currently achieved for natural fluxes, although over a small land area (cities, industrial sites, power plants), as well as the inclusion of fossil fuel CO2 proxy measurements such as radiocarbon in CO2 and carbon-fuel combustion tracers. Additionally, a policy-relevant carbon monitoring system should also provide mechanisms for reconciling regional top-down (atmosphere-based) and bottom-up (surface-based) flux estimates across the range of spatial and temporal scales relevant to mitigation policies. In addition, uncertainties for each observation data-stream should be assessed. The success of the system will rely on long-term commitments to monitoring, on improved international collaboration to fill gaps in the current observations, on sustained efforts to improve access to the different data streams and make databases interoperable, and on the calibration of each component of the system to agreed-upon international scales.
format Article in Journal/Newspaper
author Ciais, P.
Dolman, A. J.
Bombelli, A.
Duren, R.
Peregon, A.
Rayner, P. J.
Miller, C.
Gobron, N.
Kinderman, G.
Marland, G.
Gruber, N.
Chevallier, F.
Andres, R. J.
Balsamo, G.
Bopp, L.
Bréon, F.-M.
Broquet, G.
Dargaville, R.
Battin, T. J.
Borges, A.
Bovensmann, H.
Buchwitz, M.
Butler, J.
Canadell, J. G.
Cook, R. B.
DeFries, R.
Engelen, R.
Gurney, K. R.
Heinze, C.
Heimann, M.
Held, A.
Henry, M.
Law, B.
Luyssaert, S.
Miller, J.
Moriyama, T.
Moulin, C.
Myneni, R. B.
Nussli, C.
Obersteiner, M.
Ojima, D.
Pan, Y.
Paris, J.-D.
Piao, S. L.
Poulter, B.
Plummer, S.
Quegan, S.
Raymond, P.
Reichstein, M.
Rivier, L.
Sabine, C.
Schimel, D.
Tarasova, O.
Valentini, R.
Wang, R.
van der Werf, G.
Wickland, D.
Williams, M.
Zehner, C.
author_facet Ciais, P.
Dolman, A. J.
Bombelli, A.
Duren, R.
Peregon, A.
Rayner, P. J.
Miller, C.
Gobron, N.
Kinderman, G.
Marland, G.
Gruber, N.
Chevallier, F.
Andres, R. J.
Balsamo, G.
Bopp, L.
Bréon, F.-M.
Broquet, G.
Dargaville, R.
Battin, T. J.
Borges, A.
Bovensmann, H.
Buchwitz, M.
Butler, J.
Canadell, J. G.
Cook, R. B.
DeFries, R.
Engelen, R.
Gurney, K. R.
Heinze, C.
Heimann, M.
Held, A.
Henry, M.
Law, B.
Luyssaert, S.
Miller, J.
Moriyama, T.
Moulin, C.
Myneni, R. B.
Nussli, C.
Obersteiner, M.
Ojima, D.
Pan, Y.
Paris, J.-D.
Piao, S. L.
Poulter, B.
Plummer, S.
Quegan, S.
Raymond, P.
Reichstein, M.
Rivier, L.
Sabine, C.
Schimel, D.
Tarasova, O.
Valentini, R.
Wang, R.
van der Werf, G.
Wickland, D.
Williams, M.
Zehner, C.
author_sort Ciais, P.
title Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system
title_short Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system
title_full Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system
title_fullStr Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system
title_full_unstemmed Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system
title_sort current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system
publisher Copernicus Publications
publishDate 2014
url https://doi.org/10.5194/bg-11-3547-2014
https://noa.gwlb.de/receive/cop_mods_00019584
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00019539/bg-11-3547-2014.pdf
https://bg.copernicus.org/articles/11/3547/2014/bg-11-3547-2014.pdf
geographic Arctic
geographic_facet Arctic
genre Arctic
genre_facet Arctic
op_relation Biogeosciences -- http://www.bibliothek.uni-regensburg.de/ezeit/?2158181 -- http://www.copernicus.org/EGU/bg/bg.html -- 1726-4189
https://doi.org/10.5194/bg-11-3547-2014
https://noa.gwlb.de/receive/cop_mods_00019584
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00019539/bg-11-3547-2014.pdf
https://bg.copernicus.org/articles/11/3547/2014/bg-11-3547-2014.pdf
op_rights uneingeschränkt
info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.5194/bg-11-3547-2014
container_title Biogeosciences
container_volume 11
container_issue 13
container_start_page 3547
op_container_end_page 3602
_version_ 1766349729402191872
spelling ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00019584 2023-05-15T15:19:32+02:00 Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system Ciais, P. Dolman, A. J. Bombelli, A. Duren, R. Peregon, A. Rayner, P. J. Miller, C. Gobron, N. Kinderman, G. Marland, G. Gruber, N. Chevallier, F. Andres, R. J. Balsamo, G. Bopp, L. Bréon, F.-M. Broquet, G. Dargaville, R. Battin, T. J. Borges, A. Bovensmann, H. Buchwitz, M. Butler, J. Canadell, J. G. Cook, R. B. DeFries, R. Engelen, R. Gurney, K. R. Heinze, C. Heimann, M. Held, A. Henry, M. Law, B. Luyssaert, S. Miller, J. Moriyama, T. Moulin, C. Myneni, R. B. Nussli, C. Obersteiner, M. Ojima, D. Pan, Y. Paris, J.-D. Piao, S. L. Poulter, B. Plummer, S. Quegan, S. Raymond, P. Reichstein, M. Rivier, L. Sabine, C. Schimel, D. Tarasova, O. Valentini, R. Wang, R. van der Werf, G. Wickland, D. Williams, M. Zehner, C. 2014-07 electronic https://doi.org/10.5194/bg-11-3547-2014 https://noa.gwlb.de/receive/cop_mods_00019584 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00019539/bg-11-3547-2014.pdf https://bg.copernicus.org/articles/11/3547/2014/bg-11-3547-2014.pdf eng eng Copernicus Publications Biogeosciences -- http://www.bibliothek.uni-regensburg.de/ezeit/?2158181 -- http://www.copernicus.org/EGU/bg/bg.html -- 1726-4189 https://doi.org/10.5194/bg-11-3547-2014 https://noa.gwlb.de/receive/cop_mods_00019584 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00019539/bg-11-3547-2014.pdf https://bg.copernicus.org/articles/11/3547/2014/bg-11-3547-2014.pdf uneingeschränkt info:eu-repo/semantics/openAccess article Verlagsveröffentlichung article Text doc-type:article 2014 ftnonlinearchiv https://doi.org/10.5194/bg-11-3547-2014 2022-02-08T22:52:36Z A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The paper is addressed to scientists, policymakers, and funding agencies who need to have a global picture of the current state of the (diverse) carbon observations. We identify the current state of carbon observations, and the needs and notional requirements for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion of the ground-based observation networks required to reach the high spatial resolution for CO2 and CH4 fluxes, and for carbon stocks for addressing policy-relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over areas such as the southern oceans, tropical forests, and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote-sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground-based data. Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in situ and remotely sensed data at much higher resolution and density than currently achieved for natural fluxes, although over a small land area (cities, industrial sites, power plants), as well as the inclusion of fossil fuel CO2 proxy measurements such as radiocarbon in CO2 and carbon-fuel combustion tracers. Additionally, a policy-relevant carbon monitoring system should also provide mechanisms for reconciling regional top-down (atmosphere-based) and bottom-up (surface-based) flux estimates across the range of spatial and temporal scales relevant to mitigation policies. In addition, uncertainties for each observation data-stream should be assessed. The success of the system will rely on long-term commitments to monitoring, on improved international collaboration to fill gaps in the current observations, on sustained efforts to improve access to the different data streams and make databases interoperable, and on the calibration of each component of the system to agreed-upon international scales. Article in Journal/Newspaper Arctic Niedersächsisches Online-Archiv NOA Arctic Biogeosciences 11 13 3547 3602