Extreme ion heating in the dayside ionosphere in response to the arrival of a coronal mass ejection on 12 March 2012
Simultaneous measurements of the polar ionosphere with the European Incoherent Scatter (EISCAT) ultra high frequency (UHF) radar at Tromsø and the EISCAT Svalbard radar (ESR) at Longyearbyen were made during 07:00–12:00 UT on 12 March 2012. During the period, the Advanced Composition Explorer (ACE)...
Published in: | Annales Geophysicae |
---|---|
Main Authors: | , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2014
|
Subjects: | |
Online Access: | https://doi.org/10.5194/angeo-32-831-2014 https://noa.gwlb.de/receive/cop_mods_00019474 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00019429/angeo-32-831-2014.pdf https://angeo.copernicus.org/articles/32/831/2014/angeo-32-831-2014.pdf |
id |
ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00019474 |
---|---|
record_format |
openpolar |
spelling |
ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00019474 2023-05-15T16:04:37+02:00 Extreme ion heating in the dayside ionosphere in response to the arrival of a coronal mass ejection on 12 March 2012 Fujiwara, H. Nozawa, S. Ogawa, Y. Kataoka, R. Miyoshi, Y. Jin, H. Shinagawa, H. 2014-07 electronic https://doi.org/10.5194/angeo-32-831-2014 https://noa.gwlb.de/receive/cop_mods_00019474 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00019429/angeo-32-831-2014.pdf https://angeo.copernicus.org/articles/32/831/2014/angeo-32-831-2014.pdf eng eng Copernicus Publications Annales Geophysicae -- http://www.bibliothek.uni-regensburg.de/ezeit/?1458425 -- https://www.ann-geophys.net/ -- https://www.ann-geophys.net/volumes.html -- http://link.springer.com/journal/585 -- 1432-0576 https://doi.org/10.5194/angeo-32-831-2014 https://noa.gwlb.de/receive/cop_mods_00019474 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00019429/angeo-32-831-2014.pdf https://angeo.copernicus.org/articles/32/831/2014/angeo-32-831-2014.pdf uneingeschränkt info:eu-repo/semantics/openAccess article Verlagsveröffentlichung article Text doc-type:article 2014 ftnonlinearchiv https://doi.org/10.5194/angeo-32-831-2014 2022-02-08T22:52:39Z Simultaneous measurements of the polar ionosphere with the European Incoherent Scatter (EISCAT) ultra high frequency (UHF) radar at Tromsø and the EISCAT Svalbard radar (ESR) at Longyearbyen were made during 07:00–12:00 UT on 12 March 2012. During the period, the Advanced Composition Explorer (ACE) spacecraft observed changes in the solar wind which were due to the arrival of coronal mass ejection (CME) effects associated with the 10 March M8.4 X-ray event. The solar wind showed two-step variations which caused strong ionospheric heating. First, the arrival of shock structures in the solar wind with enhancements of density and velocity, and a negative interplanetary magnetic field (IMF)-Bz component caused strong ionospheric heating around Longyearbyen; the ion temperature at about 300 km increased from about 1100 to 3400 K over Longyearbyen while that over Tromsø increased from about 1050 to 1200 K. After the passage of the shock structures, the IMF-Bz component showed positive values and the solar wind speed and density also decreased. The second strong ionospheric heating occurred after the IMF-Bz component showed negative values again; the negative values lasted for more than 1.5 h. This solar wind variation caused stronger heating of the ionosphere in the lower latitudes than higher latitudes, suggesting expansion of the auroral oval/heating region to the lower latitude region. This study shows an example of the CME-induced dayside ionospheric heating: a short-duration and very large rise in the ion temperature which was closely related to the polar cap size and polar cap potential variations as a result of interaction between the solar wind and the magnetosphere. Article in Journal/Newspaper EISCAT Longyearbyen Svalbard Tromsø Niedersächsisches Online-Archiv NOA Svalbard Longyearbyen Tromsø Annales Geophysicae 32 7 831 839 |
institution |
Open Polar |
collection |
Niedersächsisches Online-Archiv NOA |
op_collection_id |
ftnonlinearchiv |
language |
English |
topic |
article Verlagsveröffentlichung |
spellingShingle |
article Verlagsveröffentlichung Fujiwara, H. Nozawa, S. Ogawa, Y. Kataoka, R. Miyoshi, Y. Jin, H. Shinagawa, H. Extreme ion heating in the dayside ionosphere in response to the arrival of a coronal mass ejection on 12 March 2012 |
topic_facet |
article Verlagsveröffentlichung |
description |
Simultaneous measurements of the polar ionosphere with the European Incoherent Scatter (EISCAT) ultra high frequency (UHF) radar at Tromsø and the EISCAT Svalbard radar (ESR) at Longyearbyen were made during 07:00–12:00 UT on 12 March 2012. During the period, the Advanced Composition Explorer (ACE) spacecraft observed changes in the solar wind which were due to the arrival of coronal mass ejection (CME) effects associated with the 10 March M8.4 X-ray event. The solar wind showed two-step variations which caused strong ionospheric heating. First, the arrival of shock structures in the solar wind with enhancements of density and velocity, and a negative interplanetary magnetic field (IMF)-Bz component caused strong ionospheric heating around Longyearbyen; the ion temperature at about 300 km increased from about 1100 to 3400 K over Longyearbyen while that over Tromsø increased from about 1050 to 1200 K. After the passage of the shock structures, the IMF-Bz component showed positive values and the solar wind speed and density also decreased. The second strong ionospheric heating occurred after the IMF-Bz component showed negative values again; the negative values lasted for more than 1.5 h. This solar wind variation caused stronger heating of the ionosphere in the lower latitudes than higher latitudes, suggesting expansion of the auroral oval/heating region to the lower latitude region. This study shows an example of the CME-induced dayside ionospheric heating: a short-duration and very large rise in the ion temperature which was closely related to the polar cap size and polar cap potential variations as a result of interaction between the solar wind and the magnetosphere. |
format |
Article in Journal/Newspaper |
author |
Fujiwara, H. Nozawa, S. Ogawa, Y. Kataoka, R. Miyoshi, Y. Jin, H. Shinagawa, H. |
author_facet |
Fujiwara, H. Nozawa, S. Ogawa, Y. Kataoka, R. Miyoshi, Y. Jin, H. Shinagawa, H. |
author_sort |
Fujiwara, H. |
title |
Extreme ion heating in the dayside ionosphere in response to the arrival of a coronal mass ejection on 12 March 2012 |
title_short |
Extreme ion heating in the dayside ionosphere in response to the arrival of a coronal mass ejection on 12 March 2012 |
title_full |
Extreme ion heating in the dayside ionosphere in response to the arrival of a coronal mass ejection on 12 March 2012 |
title_fullStr |
Extreme ion heating in the dayside ionosphere in response to the arrival of a coronal mass ejection on 12 March 2012 |
title_full_unstemmed |
Extreme ion heating in the dayside ionosphere in response to the arrival of a coronal mass ejection on 12 March 2012 |
title_sort |
extreme ion heating in the dayside ionosphere in response to the arrival of a coronal mass ejection on 12 march 2012 |
publisher |
Copernicus Publications |
publishDate |
2014 |
url |
https://doi.org/10.5194/angeo-32-831-2014 https://noa.gwlb.de/receive/cop_mods_00019474 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00019429/angeo-32-831-2014.pdf https://angeo.copernicus.org/articles/32/831/2014/angeo-32-831-2014.pdf |
geographic |
Svalbard Longyearbyen Tromsø |
geographic_facet |
Svalbard Longyearbyen Tromsø |
genre |
EISCAT Longyearbyen Svalbard Tromsø |
genre_facet |
EISCAT Longyearbyen Svalbard Tromsø |
op_relation |
Annales Geophysicae -- http://www.bibliothek.uni-regensburg.de/ezeit/?1458425 -- https://www.ann-geophys.net/ -- https://www.ann-geophys.net/volumes.html -- http://link.springer.com/journal/585 -- 1432-0576 https://doi.org/10.5194/angeo-32-831-2014 https://noa.gwlb.de/receive/cop_mods_00019474 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00019429/angeo-32-831-2014.pdf https://angeo.copernicus.org/articles/32/831/2014/angeo-32-831-2014.pdf |
op_rights |
uneingeschränkt info:eu-repo/semantics/openAccess |
op_doi |
https://doi.org/10.5194/angeo-32-831-2014 |
container_title |
Annales Geophysicae |
container_volume |
32 |
container_issue |
7 |
container_start_page |
831 |
op_container_end_page |
839 |
_version_ |
1766400224416235520 |