Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland
Meltwater delivered to the bed of the Greenland Ice Sheet is a driver of variable ice-motion through changes in effective pressure and enhanced basal lubrication. Ice surface velocities have been shown to respond rapidly both to meltwater production at the surface and to drainage of supraglacial lak...
Published in: | The Cryosphere |
---|---|
Main Authors: | , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2015
|
Subjects: | |
Online Access: | https://doi.org/10.5194/tc-9-123-2015 https://noa.gwlb.de/receive/cop_mods_00017757 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00017712/tc-9-123-2015.pdf https://tc.copernicus.org/articles/9/123/2015/tc-9-123-2015.pdf |
id |
ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00017757 |
---|---|
record_format |
openpolar |
spelling |
ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00017757 2023-05-15T16:21:22+02:00 Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland Clason, C. C. Mair, D. W. F. Nienow, P. W. Bartholomew, I. D. Sole, A. Palmer, S. Schwanghart, W. 2015-01 electronic https://doi.org/10.5194/tc-9-123-2015 https://noa.gwlb.de/receive/cop_mods_00017757 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00017712/tc-9-123-2015.pdf https://tc.copernicus.org/articles/9/123/2015/tc-9-123-2015.pdf eng eng Copernicus Publications The Cryosphere -- ˜Theœ Cryosphere -- http://www.bibliothek.uni-regensburg.de/ezeit/?2393169 -- http://www.the-cryosphere.net/ -- 1994-0424 https://doi.org/10.5194/tc-9-123-2015 https://noa.gwlb.de/receive/cop_mods_00017757 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00017712/tc-9-123-2015.pdf https://tc.copernicus.org/articles/9/123/2015/tc-9-123-2015.pdf uneingeschränkt info:eu-repo/semantics/openAccess article Verlagsveröffentlichung article Text doc-type:article 2015 ftnonlinearchiv https://doi.org/10.5194/tc-9-123-2015 2022-02-08T22:53:32Z Meltwater delivered to the bed of the Greenland Ice Sheet is a driver of variable ice-motion through changes in effective pressure and enhanced basal lubrication. Ice surface velocities have been shown to respond rapidly both to meltwater production at the surface and to drainage of supraglacial lakes, suggesting efficient transfer of meltwater from the supraglacial to subglacial hydrological systems. Although considerable effort is currently being directed towards improved modelling of the controlling surface and basal processes, modelling the temporal and spatial evolution of the transfer of melt to the bed has received less attention. Here we present the results of spatially distributed modelling for prediction of moulins and lake drainages on the Leverett Glacier in Southwest Greenland. The model is run for the 2009 and 2010 ablation seasons, and for future increased melt scenarios. The temporal pattern of modelled lake drainages are qualitatively comparable with those documented from analyses of repeat satellite imagery. The modelled timings and locations of delivery of meltwater to the bed also match well with observed temporal and spatial patterns of ice surface speed-ups. This is particularly true for the lower catchment (<1000 m a.s.l.) where both the model and observations indicate that the development of moulins is the main mechanism for the transfer of surface meltwater to the bed. At higher elevations (e.g. 1250–1500 m a.s.l.) the development and drainage of supraglacial lakes becomes increasingly important. At these higher elevations, the delay between modelled melt generation and subsequent delivery of melt to the bed matches the observed delay between the peak air temperatures and subsequent velocity speed-ups, while the instantaneous transfer of melt to the bed in a control simulation does not. Although both moulins and lake drainages are predicted to increase in number for future warmer climate scenarios, the lake drainages play an increasingly important role in both expanding the area over which melt accesses the bed and in enabling a greater proportion of surface melt to reach the bed. Article in Journal/Newspaper glacier Greenland Ice Sheet Leverett Glacier The Cryosphere Niedersächsisches Online-Archiv NOA Greenland Leverett Glacier ENVELOPE(-147.583,-147.583,-85.633,-85.633) The Cryosphere 9 1 123 138 |
institution |
Open Polar |
collection |
Niedersächsisches Online-Archiv NOA |
op_collection_id |
ftnonlinearchiv |
language |
English |
topic |
article Verlagsveröffentlichung |
spellingShingle |
article Verlagsveröffentlichung Clason, C. C. Mair, D. W. F. Nienow, P. W. Bartholomew, I. D. Sole, A. Palmer, S. Schwanghart, W. Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland |
topic_facet |
article Verlagsveröffentlichung |
description |
Meltwater delivered to the bed of the Greenland Ice Sheet is a driver of variable ice-motion through changes in effective pressure and enhanced basal lubrication. Ice surface velocities have been shown to respond rapidly both to meltwater production at the surface and to drainage of supraglacial lakes, suggesting efficient transfer of meltwater from the supraglacial to subglacial hydrological systems. Although considerable effort is currently being directed towards improved modelling of the controlling surface and basal processes, modelling the temporal and spatial evolution of the transfer of melt to the bed has received less attention. Here we present the results of spatially distributed modelling for prediction of moulins and lake drainages on the Leverett Glacier in Southwest Greenland. The model is run for the 2009 and 2010 ablation seasons, and for future increased melt scenarios. The temporal pattern of modelled lake drainages are qualitatively comparable with those documented from analyses of repeat satellite imagery. The modelled timings and locations of delivery of meltwater to the bed also match well with observed temporal and spatial patterns of ice surface speed-ups. This is particularly true for the lower catchment (<1000 m a.s.l.) where both the model and observations indicate that the development of moulins is the main mechanism for the transfer of surface meltwater to the bed. At higher elevations (e.g. 1250–1500 m a.s.l.) the development and drainage of supraglacial lakes becomes increasingly important. At these higher elevations, the delay between modelled melt generation and subsequent delivery of melt to the bed matches the observed delay between the peak air temperatures and subsequent velocity speed-ups, while the instantaneous transfer of melt to the bed in a control simulation does not. Although both moulins and lake drainages are predicted to increase in number for future warmer climate scenarios, the lake drainages play an increasingly important role in both expanding the area over which melt accesses the bed and in enabling a greater proportion of surface melt to reach the bed. |
format |
Article in Journal/Newspaper |
author |
Clason, C. C. Mair, D. W. F. Nienow, P. W. Bartholomew, I. D. Sole, A. Palmer, S. Schwanghart, W. |
author_facet |
Clason, C. C. Mair, D. W. F. Nienow, P. W. Bartholomew, I. D. Sole, A. Palmer, S. Schwanghart, W. |
author_sort |
Clason, C. C. |
title |
Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland |
title_short |
Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland |
title_full |
Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland |
title_fullStr |
Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland |
title_full_unstemmed |
Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland |
title_sort |
modelling the transfer of supraglacial meltwater to the bed of leverett glacier, southwest greenland |
publisher |
Copernicus Publications |
publishDate |
2015 |
url |
https://doi.org/10.5194/tc-9-123-2015 https://noa.gwlb.de/receive/cop_mods_00017757 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00017712/tc-9-123-2015.pdf https://tc.copernicus.org/articles/9/123/2015/tc-9-123-2015.pdf |
long_lat |
ENVELOPE(-147.583,-147.583,-85.633,-85.633) |
geographic |
Greenland Leverett Glacier |
geographic_facet |
Greenland Leverett Glacier |
genre |
glacier Greenland Ice Sheet Leverett Glacier The Cryosphere |
genre_facet |
glacier Greenland Ice Sheet Leverett Glacier The Cryosphere |
op_relation |
The Cryosphere -- ˜Theœ Cryosphere -- http://www.bibliothek.uni-regensburg.de/ezeit/?2393169 -- http://www.the-cryosphere.net/ -- 1994-0424 https://doi.org/10.5194/tc-9-123-2015 https://noa.gwlb.de/receive/cop_mods_00017757 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00017712/tc-9-123-2015.pdf https://tc.copernicus.org/articles/9/123/2015/tc-9-123-2015.pdf |
op_rights |
uneingeschränkt info:eu-repo/semantics/openAccess |
op_doi |
https://doi.org/10.5194/tc-9-123-2015 |
container_title |
The Cryosphere |
container_volume |
9 |
container_issue |
1 |
container_start_page |
123 |
op_container_end_page |
138 |
_version_ |
1766009378761080832 |