Enthalpy benchmark experiments for numerical ice sheet models

We present benchmark experiments to test the implementation of enthalpy and the corresponding boundary conditions in numerical ice sheet models. Since we impose several assumptions on the experiment design, analytical solutions can be formulated for the proposed numerical experiments. The first expe...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Kleiner, T., Rückamp, M., Bondzio, J. H., Humbert, A.
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2015
Subjects:
Online Access:https://doi.org/10.5194/tc-9-217-2015
https://noa.gwlb.de/receive/cop_mods_00017649
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00017604/tc-9-217-2015.pdf
https://tc.copernicus.org/articles/9/217/2015/tc-9-217-2015.pdf
id ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00017649
record_format openpolar
spelling ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00017649 2023-05-15T16:40:24+02:00 Enthalpy benchmark experiments for numerical ice sheet models Kleiner, T. Rückamp, M. Bondzio, J. H. Humbert, A. 2015-02 electronic https://doi.org/10.5194/tc-9-217-2015 https://noa.gwlb.de/receive/cop_mods_00017649 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00017604/tc-9-217-2015.pdf https://tc.copernicus.org/articles/9/217/2015/tc-9-217-2015.pdf eng eng Copernicus Publications The Cryosphere -- ˜Theœ Cryosphere -- http://www.bibliothek.uni-regensburg.de/ezeit/?2393169 -- http://www.the-cryosphere.net/ -- 1994-0424 https://doi.org/10.5194/tc-9-217-2015 https://noa.gwlb.de/receive/cop_mods_00017649 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00017604/tc-9-217-2015.pdf https://tc.copernicus.org/articles/9/217/2015/tc-9-217-2015.pdf uneingeschränkt info:eu-repo/semantics/openAccess article Verlagsveröffentlichung article Text doc-type:article 2015 ftnonlinearchiv https://doi.org/10.5194/tc-9-217-2015 2022-02-08T22:53:36Z We present benchmark experiments to test the implementation of enthalpy and the corresponding boundary conditions in numerical ice sheet models. Since we impose several assumptions on the experiment design, analytical solutions can be formulated for the proposed numerical experiments. The first experiment tests the functionality of the boundary condition scheme and the basal melt rate calculation during transient simulations. The second experiment addresses the steady-state enthalpy profile and the resulting position of the cold–temperate transition surface (CTS). For both experiments we assume ice flow in a parallel-sided slab decoupled from the thermal regime. We compare simulation results achieved by three different ice flow-models with these analytical solutions. The models agree well to the analytical solutions, if the change in conductivity between cold and temperate ice is properly considered in the model. In particular, the enthalpy gradient on the cold side of the CTS goes to zero in the limit of vanishing temperate-ice conductivity, as required from the physical jump conditions at the CTS. Article in Journal/Newspaper Ice Sheet The Cryosphere Niedersächsisches Online-Archiv NOA The Cryosphere 9 1 217 228
institution Open Polar
collection Niedersächsisches Online-Archiv NOA
op_collection_id ftnonlinearchiv
language English
topic article
Verlagsveröffentlichung
spellingShingle article
Verlagsveröffentlichung
Kleiner, T.
Rückamp, M.
Bondzio, J. H.
Humbert, A.
Enthalpy benchmark experiments for numerical ice sheet models
topic_facet article
Verlagsveröffentlichung
description We present benchmark experiments to test the implementation of enthalpy and the corresponding boundary conditions in numerical ice sheet models. Since we impose several assumptions on the experiment design, analytical solutions can be formulated for the proposed numerical experiments. The first experiment tests the functionality of the boundary condition scheme and the basal melt rate calculation during transient simulations. The second experiment addresses the steady-state enthalpy profile and the resulting position of the cold–temperate transition surface (CTS). For both experiments we assume ice flow in a parallel-sided slab decoupled from the thermal regime. We compare simulation results achieved by three different ice flow-models with these analytical solutions. The models agree well to the analytical solutions, if the change in conductivity between cold and temperate ice is properly considered in the model. In particular, the enthalpy gradient on the cold side of the CTS goes to zero in the limit of vanishing temperate-ice conductivity, as required from the physical jump conditions at the CTS.
format Article in Journal/Newspaper
author Kleiner, T.
Rückamp, M.
Bondzio, J. H.
Humbert, A.
author_facet Kleiner, T.
Rückamp, M.
Bondzio, J. H.
Humbert, A.
author_sort Kleiner, T.
title Enthalpy benchmark experiments for numerical ice sheet models
title_short Enthalpy benchmark experiments for numerical ice sheet models
title_full Enthalpy benchmark experiments for numerical ice sheet models
title_fullStr Enthalpy benchmark experiments for numerical ice sheet models
title_full_unstemmed Enthalpy benchmark experiments for numerical ice sheet models
title_sort enthalpy benchmark experiments for numerical ice sheet models
publisher Copernicus Publications
publishDate 2015
url https://doi.org/10.5194/tc-9-217-2015
https://noa.gwlb.de/receive/cop_mods_00017649
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00017604/tc-9-217-2015.pdf
https://tc.copernicus.org/articles/9/217/2015/tc-9-217-2015.pdf
genre Ice Sheet
The Cryosphere
genre_facet Ice Sheet
The Cryosphere
op_relation The Cryosphere -- ˜Theœ Cryosphere -- http://www.bibliothek.uni-regensburg.de/ezeit/?2393169 -- http://www.the-cryosphere.net/ -- 1994-0424
https://doi.org/10.5194/tc-9-217-2015
https://noa.gwlb.de/receive/cop_mods_00017649
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00017604/tc-9-217-2015.pdf
https://tc.copernicus.org/articles/9/217/2015/tc-9-217-2015.pdf
op_rights uneingeschränkt
info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.5194/tc-9-217-2015
container_title The Cryosphere
container_volume 9
container_issue 1
container_start_page 217
op_container_end_page 228
_version_ 1766030799190097920