Aerosol optical depth retrievals at the Izaña Atmospheric Observatory from 1941 to 2013 by using artificial neural networks
This paper presents the reconstruction of a 73-year time series of the aerosol optical depth (AOD) at 500 nm at the subtropical high-mountain Izaña Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain). For this purpose, we have combined AOD estimates from artificial neural netwo...
Published in: | Atmospheric Measurement Techniques |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2016
|
Subjects: | |
Online Access: | https://doi.org/10.5194/amt-9-53-2016 https://noa.gwlb.de/receive/cop_mods_00014340 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00014295/amt-9-53-2016.pdf https://amt.copernicus.org/articles/9/53/2016/amt-9-53-2016.pdf |
id |
ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00014340 |
---|---|
record_format |
openpolar |
spelling |
ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00014340 2023-05-15T13:06:24+02:00 Aerosol optical depth retrievals at the Izaña Atmospheric Observatory from 1941 to 2013 by using artificial neural networks García, R. D. García, O. E. Cuevas, E. Cachorro, V. E. Barreto, A. Guirado-Fuentes, C. Kouremeti, N. Bustos, J. J. Romero-Campos, P. M. de Frutos, A. M. 2016-01 electronic https://doi.org/10.5194/amt-9-53-2016 https://noa.gwlb.de/receive/cop_mods_00014340 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00014295/amt-9-53-2016.pdf https://amt.copernicus.org/articles/9/53/2016/amt-9-53-2016.pdf eng eng Copernicus Publications Atmospheric Measurement Techniques -- http://www.bibliothek.uni-regensburg.de/ezeit/?2505596 -- http://www.atmospheric-measurement-techniques.net/ -- 1867-8548 https://doi.org/10.5194/amt-9-53-2016 https://noa.gwlb.de/receive/cop_mods_00014340 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00014295/amt-9-53-2016.pdf https://amt.copernicus.org/articles/9/53/2016/amt-9-53-2016.pdf uneingeschränkt info:eu-repo/semantics/openAccess article Verlagsveröffentlichung article Text doc-type:article 2016 ftnonlinearchiv https://doi.org/10.5194/amt-9-53-2016 2022-02-08T22:55:10Z This paper presents the reconstruction of a 73-year time series of the aerosol optical depth (AOD) at 500 nm at the subtropical high-mountain Izaña Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain). For this purpose, we have combined AOD estimates from artificial neural networks (ANNs) from 1941 to 2001 and AOD measurements directly obtained with a Precision Filter Radiometer (PFR) between 2003 and 2013. The analysis is limited to summer months (July–August–September), when the largest aerosol load is observed at IZO (Saharan mineral dust particles). The ANN AOD time series has been comprehensively validated against coincident AOD measurements performed with a solar spectrometer Mark-I (1984–2009) and AERONET (AErosol RObotic NETwork) CIMEL photometers (2004–2009) at IZO, obtaining a rather good agreement on a daily basis: Pearson coefficient, R, of 0.97 between AERONET and ANN AOD, and 0.93 between Mark-I and ANN AOD estimates. In addition, we have analysed the long-term consistency between ANN AOD time series and long-term meteorological records identifying Saharan mineral dust events at IZO (synoptical observations and local wind records). Both analyses provide consistent results, with correlations > 85 %. Therefore, we can conclude that the reconstructed AOD time series captures well the AOD variations and dust-laden Saharan air mass outbreaks on short-term and long-term timescales and, thus, it is suitable to be used in climate analysis. Article in Journal/Newspaper Aerosol Robotic Network Niedersächsisches Online-Archiv NOA Atmospheric Measurement Techniques 9 1 53 62 |
institution |
Open Polar |
collection |
Niedersächsisches Online-Archiv NOA |
op_collection_id |
ftnonlinearchiv |
language |
English |
topic |
article Verlagsveröffentlichung |
spellingShingle |
article Verlagsveröffentlichung García, R. D. García, O. E. Cuevas, E. Cachorro, V. E. Barreto, A. Guirado-Fuentes, C. Kouremeti, N. Bustos, J. J. Romero-Campos, P. M. de Frutos, A. M. Aerosol optical depth retrievals at the Izaña Atmospheric Observatory from 1941 to 2013 by using artificial neural networks |
topic_facet |
article Verlagsveröffentlichung |
description |
This paper presents the reconstruction of a 73-year time series of the aerosol optical depth (AOD) at 500 nm at the subtropical high-mountain Izaña Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain). For this purpose, we have combined AOD estimates from artificial neural networks (ANNs) from 1941 to 2001 and AOD measurements directly obtained with a Precision Filter Radiometer (PFR) between 2003 and 2013. The analysis is limited to summer months (July–August–September), when the largest aerosol load is observed at IZO (Saharan mineral dust particles). The ANN AOD time series has been comprehensively validated against coincident AOD measurements performed with a solar spectrometer Mark-I (1984–2009) and AERONET (AErosol RObotic NETwork) CIMEL photometers (2004–2009) at IZO, obtaining a rather good agreement on a daily basis: Pearson coefficient, R, of 0.97 between AERONET and ANN AOD, and 0.93 between Mark-I and ANN AOD estimates. In addition, we have analysed the long-term consistency between ANN AOD time series and long-term meteorological records identifying Saharan mineral dust events at IZO (synoptical observations and local wind records). Both analyses provide consistent results, with correlations > 85 %. Therefore, we can conclude that the reconstructed AOD time series captures well the AOD variations and dust-laden Saharan air mass outbreaks on short-term and long-term timescales and, thus, it is suitable to be used in climate analysis. |
format |
Article in Journal/Newspaper |
author |
García, R. D. García, O. E. Cuevas, E. Cachorro, V. E. Barreto, A. Guirado-Fuentes, C. Kouremeti, N. Bustos, J. J. Romero-Campos, P. M. de Frutos, A. M. |
author_facet |
García, R. D. García, O. E. Cuevas, E. Cachorro, V. E. Barreto, A. Guirado-Fuentes, C. Kouremeti, N. Bustos, J. J. Romero-Campos, P. M. de Frutos, A. M. |
author_sort |
García, R. D. |
title |
Aerosol optical depth retrievals at the Izaña Atmospheric Observatory from 1941 to 2013 by using artificial neural networks |
title_short |
Aerosol optical depth retrievals at the Izaña Atmospheric Observatory from 1941 to 2013 by using artificial neural networks |
title_full |
Aerosol optical depth retrievals at the Izaña Atmospheric Observatory from 1941 to 2013 by using artificial neural networks |
title_fullStr |
Aerosol optical depth retrievals at the Izaña Atmospheric Observatory from 1941 to 2013 by using artificial neural networks |
title_full_unstemmed |
Aerosol optical depth retrievals at the Izaña Atmospheric Observatory from 1941 to 2013 by using artificial neural networks |
title_sort |
aerosol optical depth retrievals at the izaña atmospheric observatory from 1941 to 2013 by using artificial neural networks |
publisher |
Copernicus Publications |
publishDate |
2016 |
url |
https://doi.org/10.5194/amt-9-53-2016 https://noa.gwlb.de/receive/cop_mods_00014340 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00014295/amt-9-53-2016.pdf https://amt.copernicus.org/articles/9/53/2016/amt-9-53-2016.pdf |
genre |
Aerosol Robotic Network |
genre_facet |
Aerosol Robotic Network |
op_relation |
Atmospheric Measurement Techniques -- http://www.bibliothek.uni-regensburg.de/ezeit/?2505596 -- http://www.atmospheric-measurement-techniques.net/ -- 1867-8548 https://doi.org/10.5194/amt-9-53-2016 https://noa.gwlb.de/receive/cop_mods_00014340 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00014295/amt-9-53-2016.pdf https://amt.copernicus.org/articles/9/53/2016/amt-9-53-2016.pdf |
op_rights |
uneingeschränkt info:eu-repo/semantics/openAccess |
op_doi |
https://doi.org/10.5194/amt-9-53-2016 |
container_title |
Atmospheric Measurement Techniques |
container_volume |
9 |
container_issue |
1 |
container_start_page |
53 |
op_container_end_page |
62 |
_version_ |
1766003966541299712 |