Sub-basin-scale sea level budgets from satellite altimetry, Argo floats and satellite gravimetry: a case study in the North Atlantic Ocean

In this study, for the first time, an attempt is made to close the sea level budget on a sub-basin scale in terms of trend and amplitude of the annual cycle. We also compare the residual time series after removing the trend, the semiannual and the annual signals. To obtain errors for altimetry and A...

Full description

Bibliographic Details
Published in:Ocean Science
Main Authors: Kleinherenbrink, Marcel, Riva, Riccardo, Sun, Yu
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2016
Subjects:
Online Access:https://doi.org/10.5194/os-12-1179-2016
https://noa.gwlb.de/receive/cop_mods_00011209
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00011166/os-12-1179-2016.pdf
https://os.copernicus.org/articles/12/1179/2016/os-12-1179-2016.pdf
id ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00011209
record_format openpolar
institution Open Polar
collection Niedersächsisches Online-Archiv NOA
op_collection_id ftnonlinearchiv
language English
topic article
Verlagsveröffentlichung
spellingShingle article
Verlagsveröffentlichung
Kleinherenbrink, Marcel
Riva, Riccardo
Sun, Yu
Sub-basin-scale sea level budgets from satellite altimetry, Argo floats and satellite gravimetry: a case study in the North Atlantic Ocean
topic_facet article
Verlagsveröffentlichung
description In this study, for the first time, an attempt is made to close the sea level budget on a sub-basin scale in terms of trend and amplitude of the annual cycle. We also compare the residual time series after removing the trend, the semiannual and the annual signals. To obtain errors for altimetry and Argo, full variance–covariance matrices are computed using correlation functions and their errors are fully propagated. For altimetry, we apply a geographically dependent intermission bias [Ablain et al.(2015)], which leads to differences in trends up to 0.8 mm yr−1. Since Argo float measurements are non-homogeneously spaced, steric sea levels are first objectively interpolated onto a grid before averaging. For the Gravity Recovery And Climate Experiment (GRACE), gravity fields full variance–covariance matrices are used to propagate errors and statistically filter the gravity fields. We use four different filtered gravity field solutions and determine which post-processing strategy is best for budget closure. As a reference, the standard 96 degree Dense Decorrelation Kernel-5 (DDK5)-filtered Center for Space Research (CSR) solution is used to compute the mass component (MC). A comparison is made with two anisotropic Wiener-filtered CSR solutions up to degree and order 60 and 96 and a Wiener-filtered 90 degree ITSG solution. Budgets are computed for 10 polygons in the North Atlantic Ocean, defined in a way that the error on the trend of the MC plus steric sea level remains within 1 mm yr−1. Using the anisotropic Wiener filter on CSR gravity fields expanded up to spherical harmonic degree 96, it is possible to close the sea level budget in 9 of 10 sub-basins in terms of trend. Wiener-filtered Institute of Theoretical geodesy and Satellite Geodesy (ITSG) and the standard DDK5-filtered CSR solutions also close the trend budget if a glacial isostatic adjustment (GIA) correction error of 10–20 % is applied; however, the performance of the DDK5-filtered solution strongly depends on the orientation of the polygon due to residual striping. In 7 of 10 sub-basins, the budget of the annual cycle is closed, using the DDK5-filtered CSR or the Wiener-filtered ITSG solutions. The Wiener-filtered 60 and 96 degree CSR solutions, in combination with Argo, lack amplitude and suffer from what appears to be hydrological leakage in the Amazon and Sahel regions. After reducing the trend, the semiannual and the annual signals, 24–53 % of the residual variance in altimetry-derived sea level time series is explained by the combination of Argo steric sea levels and the Wiener-filtered ITSG MC. Based on this, we believe that the best overall solution for the MC of the sub-basin-scale budgets is the Wiener-filtered ITSG gravity fields. The interannual variability is primarily a steric signal in the North Atlantic Ocean, so for this the choice of filter and gravity field solution is not really significant.
format Article in Journal/Newspaper
author Kleinherenbrink, Marcel
Riva, Riccardo
Sun, Yu
author_facet Kleinherenbrink, Marcel
Riva, Riccardo
Sun, Yu
author_sort Kleinherenbrink, Marcel
title Sub-basin-scale sea level budgets from satellite altimetry, Argo floats and satellite gravimetry: a case study in the North Atlantic Ocean
title_short Sub-basin-scale sea level budgets from satellite altimetry, Argo floats and satellite gravimetry: a case study in the North Atlantic Ocean
title_full Sub-basin-scale sea level budgets from satellite altimetry, Argo floats and satellite gravimetry: a case study in the North Atlantic Ocean
title_fullStr Sub-basin-scale sea level budgets from satellite altimetry, Argo floats and satellite gravimetry: a case study in the North Atlantic Ocean
title_full_unstemmed Sub-basin-scale sea level budgets from satellite altimetry, Argo floats and satellite gravimetry: a case study in the North Atlantic Ocean
title_sort sub-basin-scale sea level budgets from satellite altimetry, argo floats and satellite gravimetry: a case study in the north atlantic ocean
publisher Copernicus Publications
publishDate 2016
url https://doi.org/10.5194/os-12-1179-2016
https://noa.gwlb.de/receive/cop_mods_00011209
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00011166/os-12-1179-2016.pdf
https://os.copernicus.org/articles/12/1179/2016/os-12-1179-2016.pdf
genre North Atlantic
genre_facet North Atlantic
op_relation Ocean Science -- http://www.bibliothek.uni-regensburg.de/ezeit/?2183769 -- http://www.copernicus.org/EGU/os/os.html -- 1812-0792
https://doi.org/10.5194/os-12-1179-2016
https://noa.gwlb.de/receive/cop_mods_00011209
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00011166/os-12-1179-2016.pdf
https://os.copernicus.org/articles/12/1179/2016/os-12-1179-2016.pdf
op_rights uneingeschränkt
info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.5194/os-12-1179-2016
container_title Ocean Science
container_volume 12
container_issue 6
container_start_page 1179
op_container_end_page 1203
_version_ 1766130308916183040
spelling ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00011209 2023-05-15T17:32:16+02:00 Sub-basin-scale sea level budgets from satellite altimetry, Argo floats and satellite gravimetry: a case study in the North Atlantic Ocean Kleinherenbrink, Marcel Riva, Riccardo Sun, Yu 2016-11 electronic https://doi.org/10.5194/os-12-1179-2016 https://noa.gwlb.de/receive/cop_mods_00011209 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00011166/os-12-1179-2016.pdf https://os.copernicus.org/articles/12/1179/2016/os-12-1179-2016.pdf eng eng Copernicus Publications Ocean Science -- http://www.bibliothek.uni-regensburg.de/ezeit/?2183769 -- http://www.copernicus.org/EGU/os/os.html -- 1812-0792 https://doi.org/10.5194/os-12-1179-2016 https://noa.gwlb.de/receive/cop_mods_00011209 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00011166/os-12-1179-2016.pdf https://os.copernicus.org/articles/12/1179/2016/os-12-1179-2016.pdf uneingeschränkt info:eu-repo/semantics/openAccess article Verlagsveröffentlichung article Text doc-type:article 2016 ftnonlinearchiv https://doi.org/10.5194/os-12-1179-2016 2022-02-08T22:56:37Z In this study, for the first time, an attempt is made to close the sea level budget on a sub-basin scale in terms of trend and amplitude of the annual cycle. We also compare the residual time series after removing the trend, the semiannual and the annual signals. To obtain errors for altimetry and Argo, full variance–covariance matrices are computed using correlation functions and their errors are fully propagated. For altimetry, we apply a geographically dependent intermission bias [Ablain et al.(2015)], which leads to differences in trends up to 0.8 mm yr−1. Since Argo float measurements are non-homogeneously spaced, steric sea levels are first objectively interpolated onto a grid before averaging. For the Gravity Recovery And Climate Experiment (GRACE), gravity fields full variance–covariance matrices are used to propagate errors and statistically filter the gravity fields. We use four different filtered gravity field solutions and determine which post-processing strategy is best for budget closure. As a reference, the standard 96 degree Dense Decorrelation Kernel-5 (DDK5)-filtered Center for Space Research (CSR) solution is used to compute the mass component (MC). A comparison is made with two anisotropic Wiener-filtered CSR solutions up to degree and order 60 and 96 and a Wiener-filtered 90 degree ITSG solution. Budgets are computed for 10 polygons in the North Atlantic Ocean, defined in a way that the error on the trend of the MC plus steric sea level remains within 1 mm yr−1. Using the anisotropic Wiener filter on CSR gravity fields expanded up to spherical harmonic degree 96, it is possible to close the sea level budget in 9 of 10 sub-basins in terms of trend. Wiener-filtered Institute of Theoretical geodesy and Satellite Geodesy (ITSG) and the standard DDK5-filtered CSR solutions also close the trend budget if a glacial isostatic adjustment (GIA) correction error of 10–20 % is applied; however, the performance of the DDK5-filtered solution strongly depends on the orientation of the polygon due to residual striping. In 7 of 10 sub-basins, the budget of the annual cycle is closed, using the DDK5-filtered CSR or the Wiener-filtered ITSG solutions. The Wiener-filtered 60 and 96 degree CSR solutions, in combination with Argo, lack amplitude and suffer from what appears to be hydrological leakage in the Amazon and Sahel regions. After reducing the trend, the semiannual and the annual signals, 24–53 % of the residual variance in altimetry-derived sea level time series is explained by the combination of Argo steric sea levels and the Wiener-filtered ITSG MC. Based on this, we believe that the best overall solution for the MC of the sub-basin-scale budgets is the Wiener-filtered ITSG gravity fields. The interannual variability is primarily a steric signal in the North Atlantic Ocean, so for this the choice of filter and gravity field solution is not really significant. Article in Journal/Newspaper North Atlantic Niedersächsisches Online-Archiv NOA Ocean Science 12 6 1179 1203