Sensitivity of the current Antarctic surface mass balance to sea surface conditions using MAR

Estimates for the recent period and projections of the Antarctic surface mass balance (SMB) often rely on high-resolution polar-oriented regional climate models (RCMs). However, RCMs require large-scale boundary forcing fields prescribed by reanalyses or general circulation models (GCMs). Since the...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Kittel, Christoph, Amory, Charles, Agosta, Cécile, Delhasse, Alison, Doutreloup, Sébastien, Huot, Pierre-Vincent, Wyard, Coraline, Fichefet, Thierry, Fettweis, Xavier
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2018
Subjects:
Online Access:https://doi.org/10.5194/tc-12-3827-2018
https://noa.gwlb.de/receive/cop_mods_00003745
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00003702/tc-12-3827-2018.pdf
https://tc.copernicus.org/articles/12/3827/2018/tc-12-3827-2018.pdf
id ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00003745
record_format openpolar
spelling ftnonlinearchiv:oai:noa.gwlb.de:cop_mods_00003745 2023-05-15T13:49:21+02:00 Sensitivity of the current Antarctic surface mass balance to sea surface conditions using MAR Kittel, Christoph Amory, Charles Agosta, Cécile Delhasse, Alison Doutreloup, Sébastien Huot, Pierre-Vincent Wyard, Coraline Fichefet, Thierry Fettweis, Xavier 2018-12 electronic https://doi.org/10.5194/tc-12-3827-2018 https://noa.gwlb.de/receive/cop_mods_00003745 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00003702/tc-12-3827-2018.pdf https://tc.copernicus.org/articles/12/3827/2018/tc-12-3827-2018.pdf eng eng Copernicus Publications The Cryosphere -- ˜Theœ Cryosphere -- http://www.bibliothek.uni-regensburg.de/ezeit/?2393169 -- http://www.the-cryosphere.net/ -- 1994-0424 https://doi.org/10.5194/tc-12-3827-2018 https://noa.gwlb.de/receive/cop_mods_00003745 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00003702/tc-12-3827-2018.pdf https://tc.copernicus.org/articles/12/3827/2018/tc-12-3827-2018.pdf https://creativecommons.org/licenses/by/4.0/ uneingeschränkt info:eu-repo/semantics/openAccess CC-BY article Verlagsveröffentlichung article Text doc-type:article 2018 ftnonlinearchiv https://doi.org/10.5194/tc-12-3827-2018 2022-02-08T23:00:27Z Estimates for the recent period and projections of the Antarctic surface mass balance (SMB) often rely on high-resolution polar-oriented regional climate models (RCMs). However, RCMs require large-scale boundary forcing fields prescribed by reanalyses or general circulation models (GCMs). Since the recent variability of sea surface conditions (SSCs, namely sea ice concentration, SIC, and sea surface temperature, SST) over the Southern Ocean is not reproduced by most GCMs from the 5th phase of the Coupled Model Intercomparison Project (CMIP5), RCMs are then subject to potential biases. We investigate here the direct sensitivity of the Antarctic SMB to SSC perturbations around the Antarctic. With the RCM “Modèle Atmosphérique Régional” (MAR), different sensitivity experiments are performed over 1979–2015 by modifying the ERA-Interim SSCs with (i) homogeneous perturbations and (ii) mean anomalies estimated from all CMIP5 models and two extreme ones, while atmospheric lateral boundary conditions remained unchanged. Results show increased (decreased) precipitation due to perturbations inducing warmer, i.e. higher SST and lower SIC (colder, i.e. lower SST and higher SIC), SSCs than ERA-Interim, significantly affecting the SMB of coastal areas, as precipitation is mainly related to cyclones that do not penetrate far into the continent. At the continental scale, significant SMB anomalies (i.e greater than the interannual variability) are found for the largest combined SST/SIC perturbations. This is notably due to moisture anomalies above the ocean, reaching sufficiently high atmospheric levels to influence accumulation rates further inland. Sensitivity experiments with warmer SSCs based on the CMIP5 biases reveal integrated SMB anomalies (+5 % to +13 %) over the present climate (1979–2015) in the lower range of the SMB increase projected for the end of the 21st century. Article in Journal/Newspaper Antarc* Antarctic Sea ice Southern Ocean The Cryosphere Niedersächsisches Online-Archiv NOA Antarctic Southern Ocean The Antarctic The Cryosphere 12 12 3827 3839
institution Open Polar
collection Niedersächsisches Online-Archiv NOA
op_collection_id ftnonlinearchiv
language English
topic article
Verlagsveröffentlichung
spellingShingle article
Verlagsveröffentlichung
Kittel, Christoph
Amory, Charles
Agosta, Cécile
Delhasse, Alison
Doutreloup, Sébastien
Huot, Pierre-Vincent
Wyard, Coraline
Fichefet, Thierry
Fettweis, Xavier
Sensitivity of the current Antarctic surface mass balance to sea surface conditions using MAR
topic_facet article
Verlagsveröffentlichung
description Estimates for the recent period and projections of the Antarctic surface mass balance (SMB) often rely on high-resolution polar-oriented regional climate models (RCMs). However, RCMs require large-scale boundary forcing fields prescribed by reanalyses or general circulation models (GCMs). Since the recent variability of sea surface conditions (SSCs, namely sea ice concentration, SIC, and sea surface temperature, SST) over the Southern Ocean is not reproduced by most GCMs from the 5th phase of the Coupled Model Intercomparison Project (CMIP5), RCMs are then subject to potential biases. We investigate here the direct sensitivity of the Antarctic SMB to SSC perturbations around the Antarctic. With the RCM “Modèle Atmosphérique Régional” (MAR), different sensitivity experiments are performed over 1979–2015 by modifying the ERA-Interim SSCs with (i) homogeneous perturbations and (ii) mean anomalies estimated from all CMIP5 models and two extreme ones, while atmospheric lateral boundary conditions remained unchanged. Results show increased (decreased) precipitation due to perturbations inducing warmer, i.e. higher SST and lower SIC (colder, i.e. lower SST and higher SIC), SSCs than ERA-Interim, significantly affecting the SMB of coastal areas, as precipitation is mainly related to cyclones that do not penetrate far into the continent. At the continental scale, significant SMB anomalies (i.e greater than the interannual variability) are found for the largest combined SST/SIC perturbations. This is notably due to moisture anomalies above the ocean, reaching sufficiently high atmospheric levels to influence accumulation rates further inland. Sensitivity experiments with warmer SSCs based on the CMIP5 biases reveal integrated SMB anomalies (+5 % to +13 %) over the present climate (1979–2015) in the lower range of the SMB increase projected for the end of the 21st century.
format Article in Journal/Newspaper
author Kittel, Christoph
Amory, Charles
Agosta, Cécile
Delhasse, Alison
Doutreloup, Sébastien
Huot, Pierre-Vincent
Wyard, Coraline
Fichefet, Thierry
Fettweis, Xavier
author_facet Kittel, Christoph
Amory, Charles
Agosta, Cécile
Delhasse, Alison
Doutreloup, Sébastien
Huot, Pierre-Vincent
Wyard, Coraline
Fichefet, Thierry
Fettweis, Xavier
author_sort Kittel, Christoph
title Sensitivity of the current Antarctic surface mass balance to sea surface conditions using MAR
title_short Sensitivity of the current Antarctic surface mass balance to sea surface conditions using MAR
title_full Sensitivity of the current Antarctic surface mass balance to sea surface conditions using MAR
title_fullStr Sensitivity of the current Antarctic surface mass balance to sea surface conditions using MAR
title_full_unstemmed Sensitivity of the current Antarctic surface mass balance to sea surface conditions using MAR
title_sort sensitivity of the current antarctic surface mass balance to sea surface conditions using mar
publisher Copernicus Publications
publishDate 2018
url https://doi.org/10.5194/tc-12-3827-2018
https://noa.gwlb.de/receive/cop_mods_00003745
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00003702/tc-12-3827-2018.pdf
https://tc.copernicus.org/articles/12/3827/2018/tc-12-3827-2018.pdf
geographic Antarctic
Southern Ocean
The Antarctic
geographic_facet Antarctic
Southern Ocean
The Antarctic
genre Antarc*
Antarctic
Sea ice
Southern Ocean
The Cryosphere
genre_facet Antarc*
Antarctic
Sea ice
Southern Ocean
The Cryosphere
op_relation The Cryosphere -- ˜Theœ Cryosphere -- http://www.bibliothek.uni-regensburg.de/ezeit/?2393169 -- http://www.the-cryosphere.net/ -- 1994-0424
https://doi.org/10.5194/tc-12-3827-2018
https://noa.gwlb.de/receive/cop_mods_00003745
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00003702/tc-12-3827-2018.pdf
https://tc.copernicus.org/articles/12/3827/2018/tc-12-3827-2018.pdf
op_rights https://creativecommons.org/licenses/by/4.0/
uneingeschränkt
info:eu-repo/semantics/openAccess
op_rightsnorm CC-BY
op_doi https://doi.org/10.5194/tc-12-3827-2018
container_title The Cryosphere
container_volume 12
container_issue 12
container_start_page 3827
op_container_end_page 3839
_version_ 1766251202626977792