Evolution of the brain and sensory organs in Sphenisciformes: new data from the stem penguin Paraptenodytes antarcticus

Penguins have undergone dramatic changes associated with the evolution of underwater flight and subsequent loss of aerial flight, which are manifest and well documented in the musculoskeletal system and integument. Significant modification of neurosensory systems and endocranial spaces may also be e...

Full description

Bibliographic Details
Published in:Zoological Journal of the Linnean Society
Main Authors: Ksepka, D T, Balanoff, Amy M, Walsh, Stig A, Revan, A, Ho, A
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley-Blackwell 2012
Subjects:
Online Access:http://repository.nms.ac.uk/1354/
http://onlinelibrary.wiley.com/doi/10.1111/j.1096-3642.2012.00835.x/abstract
https://doi.org/10.1111/j.1096-3642.2012.00835.x
id ftnmscotland:oai:repository.nms.ac.uk:1354
record_format openpolar
spelling ftnmscotland:oai:repository.nms.ac.uk:1354 2023-05-15T13:57:50+02:00 Evolution of the brain and sensory organs in Sphenisciformes: new data from the stem penguin Paraptenodytes antarcticus Ksepka, D T Balanoff, Amy M Walsh, Stig A Revan, A Ho, A 2012-09 http://repository.nms.ac.uk/1354/ http://onlinelibrary.wiley.com/doi/10.1111/j.1096-3642.2012.00835.x/abstract https://doi.org/10.1111/j.1096-3642.2012.00835.x unknown Wiley-Blackwell Ksepka, D T, Balanoff, Amy M, Walsh, Stig A <http://repository.nms.ac.uk/view/nmsauthors/Walsh=3AStig_A=3A=3A.html>, Revan, A and Ho, A (2012) Evolution of the brain and sensory organs in Sphenisciformes: new data from the stem penguin Paraptenodytes antarcticus. Zoological Journal Of The Linnean Society, 166 (1). pp. 202-219. doi:10.1111/j.1096-3642.2012.00835.x QL Zoology Article PeerReviewed 2012 ftnmscotland https://doi.org/10.1111/j.1096-3642.2012.00835.x 2019-11-09T11:03:25Z Penguins have undergone dramatic changes associated with the evolution of underwater flight and subsequent loss of aerial flight, which are manifest and well documented in the musculoskeletal system and integument. Significant modification of neurosensory systems and endocranial spaces may also be expected along this locomotor transition. However, no investigations of the brain and sensory organs of extinct stem lineage Sphenisciformes have been carried out, and few data exist even for extant species of Spheniscidae. In order to explore neuroanatomical evolution in penguins, we generated virtual endocasts for the early Miocene stem penguin Paraptenodytes antarcticus, three extant penguin species (Pygoscelis antarctica, Aptenodytes patagonicus, Spheniscus magellanicus), and two outgroup species (the common loon Gavia immer and the Laysan albatross Phoebastria immutabilis). These endocasts yield new anatomical data and phylogenetically informative characters from the brain, carotid arteries, pneumatic recesses, and semicircular canal system. Despite having undergone over 60 million years of evolution since the loss of flight, penguins retain many attributes traditionally linked to flight. Features associated with visual acuity and proprioception, such as the sagittal eminence and flocculus, show a similar degree of development to those of volant birds in the three extant penguins and Paraptenodytes antarcticus. These features, although clearly not flight-related in penguins, are consistent with the neurological demands associated with rapid manoeuvring in complex aquatic environments. Semicircular canal orientation in penguins is similar to volant birds. Interestingly, canal radius is grossly enlarged in the fossil taxon Pa. antarcticus compared to living penguins and outgroups. In contrast to all other living birds, the contralateral anterior tympanic recesses of extant penguins do not communicate. An interaural pathway connecting these recesses is retained in Pa. antarcticus, suggesting that stem penguins may still have employed this connection, potentially to enhance directional localization of sound. Paedomorphosis, already identified as a potential factor in crown clade penguin skeletal morphology, may also be implicated in the failure of an interaural pathway to form during ontogeny in extant penguins. Article in Journal/Newspaper Antarc* Antarctica antarcticus Pygoscelis antarctica Unknown Zoological Journal of the Linnean Society no no
institution Open Polar
collection Unknown
op_collection_id ftnmscotland
language unknown
topic QL Zoology
spellingShingle QL Zoology
Ksepka, D T
Balanoff, Amy M
Walsh, Stig A
Revan, A
Ho, A
Evolution of the brain and sensory organs in Sphenisciformes: new data from the stem penguin Paraptenodytes antarcticus
topic_facet QL Zoology
description Penguins have undergone dramatic changes associated with the evolution of underwater flight and subsequent loss of aerial flight, which are manifest and well documented in the musculoskeletal system and integument. Significant modification of neurosensory systems and endocranial spaces may also be expected along this locomotor transition. However, no investigations of the brain and sensory organs of extinct stem lineage Sphenisciformes have been carried out, and few data exist even for extant species of Spheniscidae. In order to explore neuroanatomical evolution in penguins, we generated virtual endocasts for the early Miocene stem penguin Paraptenodytes antarcticus, three extant penguin species (Pygoscelis antarctica, Aptenodytes patagonicus, Spheniscus magellanicus), and two outgroup species (the common loon Gavia immer and the Laysan albatross Phoebastria immutabilis). These endocasts yield new anatomical data and phylogenetically informative characters from the brain, carotid arteries, pneumatic recesses, and semicircular canal system. Despite having undergone over 60 million years of evolution since the loss of flight, penguins retain many attributes traditionally linked to flight. Features associated with visual acuity and proprioception, such as the sagittal eminence and flocculus, show a similar degree of development to those of volant birds in the three extant penguins and Paraptenodytes antarcticus. These features, although clearly not flight-related in penguins, are consistent with the neurological demands associated with rapid manoeuvring in complex aquatic environments. Semicircular canal orientation in penguins is similar to volant birds. Interestingly, canal radius is grossly enlarged in the fossil taxon Pa. antarcticus compared to living penguins and outgroups. In contrast to all other living birds, the contralateral anterior tympanic recesses of extant penguins do not communicate. An interaural pathway connecting these recesses is retained in Pa. antarcticus, suggesting that stem penguins may still have employed this connection, potentially to enhance directional localization of sound. Paedomorphosis, already identified as a potential factor in crown clade penguin skeletal morphology, may also be implicated in the failure of an interaural pathway to form during ontogeny in extant penguins.
format Article in Journal/Newspaper
author Ksepka, D T
Balanoff, Amy M
Walsh, Stig A
Revan, A
Ho, A
author_facet Ksepka, D T
Balanoff, Amy M
Walsh, Stig A
Revan, A
Ho, A
author_sort Ksepka, D T
title Evolution of the brain and sensory organs in Sphenisciformes: new data from the stem penguin Paraptenodytes antarcticus
title_short Evolution of the brain and sensory organs in Sphenisciformes: new data from the stem penguin Paraptenodytes antarcticus
title_full Evolution of the brain and sensory organs in Sphenisciformes: new data from the stem penguin Paraptenodytes antarcticus
title_fullStr Evolution of the brain and sensory organs in Sphenisciformes: new data from the stem penguin Paraptenodytes antarcticus
title_full_unstemmed Evolution of the brain and sensory organs in Sphenisciformes: new data from the stem penguin Paraptenodytes antarcticus
title_sort evolution of the brain and sensory organs in sphenisciformes: new data from the stem penguin paraptenodytes antarcticus
publisher Wiley-Blackwell
publishDate 2012
url http://repository.nms.ac.uk/1354/
http://onlinelibrary.wiley.com/doi/10.1111/j.1096-3642.2012.00835.x/abstract
https://doi.org/10.1111/j.1096-3642.2012.00835.x
genre Antarc*
Antarctica
antarcticus
Pygoscelis antarctica
genre_facet Antarc*
Antarctica
antarcticus
Pygoscelis antarctica
op_relation Ksepka, D T, Balanoff, Amy M, Walsh, Stig A <http://repository.nms.ac.uk/view/nmsauthors/Walsh=3AStig_A=3A=3A.html>, Revan, A and Ho, A (2012) Evolution of the brain and sensory organs in Sphenisciformes: new data from the stem penguin Paraptenodytes antarcticus. Zoological Journal Of The Linnean Society, 166 (1). pp. 202-219.
doi:10.1111/j.1096-3642.2012.00835.x
op_doi https://doi.org/10.1111/j.1096-3642.2012.00835.x
container_title Zoological Journal of the Linnean Society
container_start_page no
op_container_end_page no
_version_ 1766265739390484480