Evidence of Paleoproterozoic metamorphism in Vestfold Hills, East Antarctica: Insights from phase equilibria modelling and monazite CHIME dating

The Vestfold Hills sector on the coastal fringe of the Princess Elizabeth Land forms part of an Archean to Paleoproterozoic aged cratonic nucleus of the East Antarctic Shield. A charnockite-granite association from the Mossel Gneiss Group in the northern region of the Vestfold Hills is investigated...

Full description

Bibliographic Details
Published in:Polar Science
Main Authors: Naik Aditya, Arora Devsamridhi, Pandey Mayuri, Pant Naresh Chandra, Gupta Rashmi
Format: Other/Unknown Material
Language:English
Published: 2023
Subjects:
Online Access:https://nipr.repo.nii.ac.jp/records/2000368
Description
Summary:The Vestfold Hills sector on the coastal fringe of the Princess Elizabeth Land forms part of an Archean to Paleoproterozoic aged cratonic nucleus of the East Antarctic Shield. A charnockite-granite association from the Mossel Gneiss Group in the northern region of the Vestfold Hills is investigated in this work to characterise the metamorphic-magmatic evolution of the area. Conventional thermometry and phase equilibria modelling indicate that the charnockite formed as a result of ultra-high temperature metamorphism at low-intermediate pressure (∼4 kbar). Phase equilibria modelling, reveals that the melt-integrated charnockite composition is a restitic product of a protolith of quartz diorite composition which underwent isobaric heating (peak temperature up to 960 °C) at 4 kbar pressure followed by anatexis. The anatexis of the quartz diorite protolith also resulted in the formation of the associated granitic melt. U–Th-PbTotal ages obtained from monazites of the granite integrated with CHIME ages extracted using the isochron method indicate an emplacement age of ∼2200 Ma and two younger events are recorded at ∼2000 Ma and ∼1700 Ma. The younger ages are ascribed to the resetting during the emplacement of younger basalt dykes that cross cut the charnockite-granite sequence. Vestfold Hills’ geological correlations with Indian and Australian cratons are discussed considering this new data. journal article