A saltier glacial mediterranean outflow
AbstractThe state of Atlantic Meridional Overturning Circulation (AMOC) is influenced by both thestrength and the location of the Mediterranean Outflow Water (MOW) plume in the Gulf of Cadiz. Toevaluate the influence of MOW on AMOC over deglaciations, precise and accurate salinity and temperaturerec...
Published in: | Paleoceanography and Paleoclimatology |
---|---|
Main Authors: | , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.vliz.be/imisdocs/publications/42/312542.pdf |
id |
ftnioz:oai:imis.nioz.nl:294657 |
---|---|
record_format |
openpolar |
spelling |
ftnioz:oai:imis.nioz.nl:294657 2023-05-15T16:41:20+02:00 A saltier glacial mediterranean outflow van Dijk, J. Ziegler, M. de Nooijer, L.J. Reichart, G.-J. Xuan, C. Ducassou, E. Bernasconi, S.M. Lourens, L.J. 2018 application/pdf https://www.vliz.be/imisdocs/publications/42/312542.pdf en eng info:eu-repo/semantics/altIdentifier/wos/000428070000004 info:eu-repo/semantics/altIdentifier/doi/doi.org/10.1002/2017pa003228 https://www.vliz.be/imisdocs/publications/42/312542.pdf info:eu-repo/semantics/openAccess %3Ci%3EPaleoceanography+and+Paleoclimatology+33%282%29%3C%2Fi%3E%3A+179-197.+%3Ca+href%3D%22https%3A%2F%2Fdx.doi.org%2F10.1002%2F2017pa003228%22+target%3D%22_blank%22%3Ehttps%3A%2F%2Fdx.doi.org%2F10.1002%2F2017pa003228%3C%2Fa%3E info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2018 ftnioz https://doi.org/10.1002/2017pa003228 2022-10-12T22:20:04Z AbstractThe state of Atlantic Meridional Overturning Circulation (AMOC) is influenced by both thestrength and the location of the Mediterranean Outflow Water (MOW) plume in the Gulf of Cadiz. Toevaluate the influence of MOW on AMOC over deglaciations, precise and accurate salinity and temperaturereconstructions are needed. For this purpose, we measured Mg/Ca and clumped isotopes of several benthicforaminiferal species at Integrated Ocean Drilling Program Site U1390 in the Gulf of Cadiz. The clumpedisotope results of Cibicidoides pachyderma, Uvigerina mediterranea, and Pyrgo spp. are consistent betweenspecies and record no significant difference in Last Glacial Maximum to Holocene deep water temperature.Over the deglaciation, the Mg/Ca-based temperatures derived from U. mediterranea indicate three periods ofMOW absence at Site U1390. Mg/Ca-based temperatures of Hoeglundina elegans and C. pachyderma are onaverage 6°C too cold when compared to the present core-top temperature, which we explain by a carbonateion effect on these epibenthic species related to the high alkalinity of the MOW. Combining deep watertemperature estimates with the benthic oxygen isotope data and considering different relationshipsbetween seawater oxygen isotopes and salinity, we infer a salinity decrease of MOW by three to eight unitsover the deglaciation and four units during Sapropel 1, accounting for the global δ18O depletion due to thedecrease in ice volume. Our findings confirm that the Mediterranean Sea accumulates excess salt during aglacial low stand and suggest that this salt surged into the Atlantic over the deglaciation, presumably duringHeinrich Stadial 1.Plain Language Summary The Gulf Stream is slowing down because of the meltdown of theGreenland ice sheet. In the past, such a slowdown often resulted in a brief but quite extreme climatecooling in the Northern Hemisphere. Fortunately, the Gulf Stream would eventually speed up again forreasons that remain poorly understood. It is thought that the exchange of water between the ... Article in Journal/Newspaper Ice Sheet NIOZ Repository (Royal Netherlands Institute for Sea Research) Paleoceanography and Paleoclimatology 33 2 179 197 |
institution |
Open Polar |
collection |
NIOZ Repository (Royal Netherlands Institute for Sea Research) |
op_collection_id |
ftnioz |
language |
English |
description |
AbstractThe state of Atlantic Meridional Overturning Circulation (AMOC) is influenced by both thestrength and the location of the Mediterranean Outflow Water (MOW) plume in the Gulf of Cadiz. Toevaluate the influence of MOW on AMOC over deglaciations, precise and accurate salinity and temperaturereconstructions are needed. For this purpose, we measured Mg/Ca and clumped isotopes of several benthicforaminiferal species at Integrated Ocean Drilling Program Site U1390 in the Gulf of Cadiz. The clumpedisotope results of Cibicidoides pachyderma, Uvigerina mediterranea, and Pyrgo spp. are consistent betweenspecies and record no significant difference in Last Glacial Maximum to Holocene deep water temperature.Over the deglaciation, the Mg/Ca-based temperatures derived from U. mediterranea indicate three periods ofMOW absence at Site U1390. Mg/Ca-based temperatures of Hoeglundina elegans and C. pachyderma are onaverage 6°C too cold when compared to the present core-top temperature, which we explain by a carbonateion effect on these epibenthic species related to the high alkalinity of the MOW. Combining deep watertemperature estimates with the benthic oxygen isotope data and considering different relationshipsbetween seawater oxygen isotopes and salinity, we infer a salinity decrease of MOW by three to eight unitsover the deglaciation and four units during Sapropel 1, accounting for the global δ18O depletion due to thedecrease in ice volume. Our findings confirm that the Mediterranean Sea accumulates excess salt during aglacial low stand and suggest that this salt surged into the Atlantic over the deglaciation, presumably duringHeinrich Stadial 1.Plain Language Summary The Gulf Stream is slowing down because of the meltdown of theGreenland ice sheet. In the past, such a slowdown often resulted in a brief but quite extreme climatecooling in the Northern Hemisphere. Fortunately, the Gulf Stream would eventually speed up again forreasons that remain poorly understood. It is thought that the exchange of water between the ... |
format |
Article in Journal/Newspaper |
author |
van Dijk, J. Ziegler, M. de Nooijer, L.J. Reichart, G.-J. Xuan, C. Ducassou, E. Bernasconi, S.M. Lourens, L.J. |
spellingShingle |
van Dijk, J. Ziegler, M. de Nooijer, L.J. Reichart, G.-J. Xuan, C. Ducassou, E. Bernasconi, S.M. Lourens, L.J. A saltier glacial mediterranean outflow |
author_facet |
van Dijk, J. Ziegler, M. de Nooijer, L.J. Reichart, G.-J. Xuan, C. Ducassou, E. Bernasconi, S.M. Lourens, L.J. |
author_sort |
van Dijk, J. |
title |
A saltier glacial mediterranean outflow |
title_short |
A saltier glacial mediterranean outflow |
title_full |
A saltier glacial mediterranean outflow |
title_fullStr |
A saltier glacial mediterranean outflow |
title_full_unstemmed |
A saltier glacial mediterranean outflow |
title_sort |
saltier glacial mediterranean outflow |
publishDate |
2018 |
url |
https://www.vliz.be/imisdocs/publications/42/312542.pdf |
genre |
Ice Sheet |
genre_facet |
Ice Sheet |
op_source |
%3Ci%3EPaleoceanography+and+Paleoclimatology+33%282%29%3C%2Fi%3E%3A+179-197.+%3Ca+href%3D%22https%3A%2F%2Fdx.doi.org%2F10.1002%2F2017pa003228%22+target%3D%22_blank%22%3Ehttps%3A%2F%2Fdx.doi.org%2F10.1002%2F2017pa003228%3C%2Fa%3E |
op_relation |
info:eu-repo/semantics/altIdentifier/wos/000428070000004 info:eu-repo/semantics/altIdentifier/doi/doi.org/10.1002/2017pa003228 https://www.vliz.be/imisdocs/publications/42/312542.pdf |
op_rights |
info:eu-repo/semantics/openAccess |
op_doi |
https://doi.org/10.1002/2017pa003228 |
container_title |
Paleoceanography and Paleoclimatology |
container_volume |
33 |
container_issue |
2 |
container_start_page |
179 |
op_container_end_page |
197 |
_version_ |
1766031768363728896 |