Microbially mediated redox transformations of manganese (II) along with some other trace elements: a study from Antarctic lakes

The significance of freshwater systems in global manganese cycles is well appreciated. Yet, the polar systems, which encompass the largest freshwater repository in the world, have been least studied for their role in manganese cycling. Results from a study that was conducted in the brackish water la...

Full description

Bibliographic Details
Main Authors: Krishnan, K.P., Sinha, R.K., Krishna, K., Nair, S., Singh, S.M.
Format: Article in Journal/Newspaper
Language:English
Published: Springer 2009
Subjects:
Online Access:http://drs.nio.org/drs/handle/2264/3467
id ftnio:oai:dsr.nio.org:2264/3467
record_format openpolar
spelling ftnio:oai:dsr.nio.org:2264/3467 2023-05-15T13:59:28+02:00 Microbially mediated redox transformations of manganese (II) along with some other trace elements: a study from Antarctic lakes Krishnan, K.P. Sinha, R.K. Krishna, K. Nair, S. Singh, S.M. 2009 http://drs.nio.org/drs/handle/2264/3467 en eng Springer An edited version of this paper was published by Springer. This paper is for R & D pupose and Copyright [2009] Springer. microorganisms mangroves Antarctica Journal Article 2009 ftnio 2012-08-25T20:09:20Z The significance of freshwater systems in global manganese cycles is well appreciated. Yet, the polar systems, which encompass the largest freshwater repository in the world, have been least studied for their role in manganese cycling. Results from a study that was conducted in the brackish water lakes in the Larsemann Hills region (east Antarctica) is presented. The rate of in situ manganese oxidation ranged from 0.04 to 3.96 ppb day sup(-1). These lakes harbor numerous manganese-oxidizing bacteria (10 sup(5) to 10 sup(6) CFU l sup(-1)), predominantly belonging to genera Shewanella, Pseudomonas and an unclassified genus in the family Oxalobacteriaceae. Experiments were conducted with representatives of predominant genera to understand their contribution to Mn cycling and also to assess their metabolic capabilities in the presence of this metal. In general, the total and respiring cell counts were stimulated to a maximum when the growth medium was amended with 10 mM manganese. The addition of manganese promoted the use of D-mannitol, maltose, etc., but inhibited the use of maltotriose, L-serine and glycyl L-glutamic acid. The bacterial isolates were able to catalyze both the redox reactions in manganese cycling. In vitro manganese oxidation rates ranged from 3 to 147 ppb day sup(-1), while manganese reduction rates ranged from 35 to 213 ppb day sup(-1). It was also observed that the maximum stimulation of manganese oxidation occurred in the presence of cobalt (81 plus or minus 57 ppb day sup(-1)), rather than iron (37 plus or minus 16 ppb day sup(-1)) and nickel (40 plus or minus 47 ppb day sup(-1)). Our studies suggest that cobalt could have a more profound role in manganese oxidation, while nickel promoted manganese reduction in polar aquatic systems Article in Journal/Newspaper Antarc* Antarctic Antarctica East Antarctica National Institute of Oceanography, India: Digital Repository Service (DRS@nio) Antarctic East Antarctica Larsemann Hills ENVELOPE(76.217,76.217,-69.400,-69.400)
institution Open Polar
collection National Institute of Oceanography, India: Digital Repository Service (DRS@nio)
op_collection_id ftnio
language English
topic microorganisms
mangroves
Antarctica
spellingShingle microorganisms
mangroves
Antarctica
Krishnan, K.P.
Sinha, R.K.
Krishna, K.
Nair, S.
Singh, S.M.
Microbially mediated redox transformations of manganese (II) along with some other trace elements: a study from Antarctic lakes
topic_facet microorganisms
mangroves
Antarctica
description The significance of freshwater systems in global manganese cycles is well appreciated. Yet, the polar systems, which encompass the largest freshwater repository in the world, have been least studied for their role in manganese cycling. Results from a study that was conducted in the brackish water lakes in the Larsemann Hills region (east Antarctica) is presented. The rate of in situ manganese oxidation ranged from 0.04 to 3.96 ppb day sup(-1). These lakes harbor numerous manganese-oxidizing bacteria (10 sup(5) to 10 sup(6) CFU l sup(-1)), predominantly belonging to genera Shewanella, Pseudomonas and an unclassified genus in the family Oxalobacteriaceae. Experiments were conducted with representatives of predominant genera to understand their contribution to Mn cycling and also to assess their metabolic capabilities in the presence of this metal. In general, the total and respiring cell counts were stimulated to a maximum when the growth medium was amended with 10 mM manganese. The addition of manganese promoted the use of D-mannitol, maltose, etc., but inhibited the use of maltotriose, L-serine and glycyl L-glutamic acid. The bacterial isolates were able to catalyze both the redox reactions in manganese cycling. In vitro manganese oxidation rates ranged from 3 to 147 ppb day sup(-1), while manganese reduction rates ranged from 35 to 213 ppb day sup(-1). It was also observed that the maximum stimulation of manganese oxidation occurred in the presence of cobalt (81 plus or minus 57 ppb day sup(-1)), rather than iron (37 plus or minus 16 ppb day sup(-1)) and nickel (40 plus or minus 47 ppb day sup(-1)). Our studies suggest that cobalt could have a more profound role in manganese oxidation, while nickel promoted manganese reduction in polar aquatic systems
format Article in Journal/Newspaper
author Krishnan, K.P.
Sinha, R.K.
Krishna, K.
Nair, S.
Singh, S.M.
author_facet Krishnan, K.P.
Sinha, R.K.
Krishna, K.
Nair, S.
Singh, S.M.
author_sort Krishnan, K.P.
title Microbially mediated redox transformations of manganese (II) along with some other trace elements: a study from Antarctic lakes
title_short Microbially mediated redox transformations of manganese (II) along with some other trace elements: a study from Antarctic lakes
title_full Microbially mediated redox transformations of manganese (II) along with some other trace elements: a study from Antarctic lakes
title_fullStr Microbially mediated redox transformations of manganese (II) along with some other trace elements: a study from Antarctic lakes
title_full_unstemmed Microbially mediated redox transformations of manganese (II) along with some other trace elements: a study from Antarctic lakes
title_sort microbially mediated redox transformations of manganese (ii) along with some other trace elements: a study from antarctic lakes
publisher Springer
publishDate 2009
url http://drs.nio.org/drs/handle/2264/3467
long_lat ENVELOPE(76.217,76.217,-69.400,-69.400)
geographic Antarctic
East Antarctica
Larsemann Hills
geographic_facet Antarctic
East Antarctica
Larsemann Hills
genre Antarc*
Antarctic
Antarctica
East Antarctica
genre_facet Antarc*
Antarctic
Antarctica
East Antarctica
op_rights An edited version of this paper was published by Springer. This paper is for R & D pupose and Copyright [2009] Springer.
_version_ 1766268032807600128