Summary: | Dissertação de Mestrado em Gestão do Território, Especialização em Detecção Remota e Sistemas de Informação Geográfica A Detecção Remota é uma ciência e uma técnica com grande valor na área da gestão do território, em particular das cidades, auxiliando os decisores, nomeadamente na alimentação de dados para sistemas de apoio à decisão, na observação e na monitorização da superfície terrestre. A presente dissertação de mestrado teve por objectivo geral o processamento de imagens de alta resolução espacial e espectral, usando para tal uma imagem de satélite WorldView-2. Os objectivos específicos compreendem o ensaio de diferentes abordagens de classificação. Numa primeira fase, procedeu-se à classificação da imagem com aproximação ao pixel, de forma supervisionada, pelo algoritmo random forests. Numa segunda fase, executou-se a segmentação da imagem, pelo software IDRISI Taiga, seguida da classificação de segmentos utilizando o algoritmo nearest neighbor e depois o algoritmo random forests. Numa terceira fase procedeu-se à segmentação da imagem por objectos, com o eCognition 8.0, pelo algoritmo multiresolution, classificando-os posteriormente também pelo algoritmo nearest neighbor. Por fim, foi realizada uma avaliação de exactidão dos resultados das diferentes abordagens, discutindo a sua aplicabilidade na classificação de imagens de áreas urbanas densas, efectuando-se uma análise comparada das mesmas. A área de estudo seleccionada foi uma área da cidade de Lisboa compreendendo, sobretudo, as designadas “Avenidas Novas”. Tal como a grande maioria das áreas urbanas, esta área apresenta também uma grande heterogeneidade espectral facto que permitiu avaliar a influência dessa característica na aplicação de diferentes métodos de classificação. A classificação com maior valor para a exactidão global (EG) e índice de concordância Kappa é a orientada por objectos, com valores entre os 63.6 e 90.7% e os 0.60 e 0.81, respectivamente para os diferentes níveis da nomenclatura hierarquizada. As outras classificações ...
|