Characteristics of surface “melt potential” over Antarctic ice shelves based on regional atmospheric model simulations of summer air temperature extremes from 1979/80 to 2018/19
We calculate a regional surface “melt potential” index (MPI) over Antarctic ice shelves that describes the frequency (MPI-freq, %) and intensity (MPI-int, K) of daily maximum summer temperatures exceeding a melt threshold of 273.15 K. This is used to determine which ice shelves are vulnerable to mel...
Published in: | Journal of Climate |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
American Meteorological Society
2023
|
Subjects: | |
Online Access: | http://nora.nerc.ac.uk/id/eprint/534182/ https://nora.nerc.ac.uk/id/eprint/534182/1/1520-0442-JCLI-D-22-0386.1.pdf https://journals.ametsoc.org/view/journals/clim/aop/JCLI-D-22-0386.1/JCLI-D-22-0386.1.xml |
Summary: | We calculate a regional surface “melt potential” index (MPI) over Antarctic ice shelves that describes the frequency (MPI-freq, %) and intensity (MPI-int, K) of daily maximum summer temperatures exceeding a melt threshold of 273.15 K. This is used to determine which ice shelves are vulnerable to melt-induced hydrofracture and is calculated using near-surface temperature output for each summer from 1979/80 to 2018/19 from two high-resolution regional atmospheric model hindcasts (using the MetUM and HIRHAM5). MPI is highest for Antarctic Peninsula ice shelves (MPI-freq 23-35%, MPI-int 1.2-2.1 K), lowest (2-3%, < 0 K) for Ronne-Filchner and Ross ice shelves, and around 10-24% and 0.6-1.7 K for the other West and East Antarctic ice shelves. Hotspots of MPI are apparent over many ice shelves, and they also show a decreasing trend in MPI-freq. The regional circulation patterns associated with high MPI values over West and East Antarctic ice shelves are remarkably consistent for their respective region but tied to different large-scale climate forcings. The West Antarctic circulation resembles the central Pacific El Niño pattern with a stationary Rossby wave and a strong anticyclone over the high-latitude South Pacific. By contrast, the East Antarctic circulation comprises a zonally symmetric negative Southern Annular Mode pattern with a strong regional anticyclone on the plateau and enhanced coastal easterlies/weakened Southern Ocean westerlies. Values of MPI are 3-4 times larger for a lower temperature/melt threshold of 271.15 K used in a sensitivity test, as melting can occur at temperatures lower than 273.15 K depending on snowpack properties. |
---|