Study of an Arctic blowing snow-induced bromine explosion event in Ny-Ålesund, Svalbard
Bromine explosion events (BEEs) are important processes that influence the atmospheric oxidation capacity, especially in the polar troposphere during spring. Although sea ice surface is thought to be a significant bromine source, bromine release mechanisms remain unclear. High-resolution ground-base...
Published in: | Science of The Total Environment |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Elsevier
2022
|
Subjects: | |
Online Access: | http://nora.nerc.ac.uk/id/eprint/532691/ https://nora.nerc.ac.uk/id/eprint/532691/1/1-s2.0-S0048969722034325-main.pdf https://www.sciencedirect.com/science/article/pii/S0048969722034325/ |
id |
ftnerc:oai:nora.nerc.ac.uk:532691 |
---|---|
record_format |
openpolar |
spelling |
ftnerc:oai:nora.nerc.ac.uk:532691 2023-05-15T14:27:06+02:00 Study of an Arctic blowing snow-induced bromine explosion event in Ny-Ålesund, Svalbard Chen, Douxing Luo, Yuhan Yang, Xin Si, Fuqi Dou, Ke Zhou, Haijin Qian, Yuanyuan Hu, Chunqiao Liu, Jianguo Liu, Wenqing 2022-09-15 text http://nora.nerc.ac.uk/id/eprint/532691/ https://nora.nerc.ac.uk/id/eprint/532691/1/1-s2.0-S0048969722034325-main.pdf https://www.sciencedirect.com/science/article/pii/S0048969722034325/ en eng Elsevier https://nora.nerc.ac.uk/id/eprint/532691/1/1-s2.0-S0048969722034325-main.pdf Chen, Douxing; Luo, Yuhan; Yang, Xin orcid:0000-0002-3838-9758 Si, Fuqi; Dou, Ke; Zhou, Haijin; Qian, Yuanyuan; Hu, Chunqiao; Liu, Jianguo; Liu, Wenqing. 2022 Study of an Arctic blowing snow-induced bromine explosion event in Ny-Ålesund, Svalbard. Science of The Total Environment, 839, 156335. 13, pp. https://doi.org/10.1016/j.scitotenv.2022.156335 <https://doi.org/10.1016/j.scitotenv.2022.156335> cc_by_nc_4 CC-BY-NC Publication - Article PeerReviewed 2022 ftnerc https://doi.org/10.1016/j.scitotenv.2022.156335 2023-02-04T19:53:18Z Bromine explosion events (BEEs) are important processes that influence the atmospheric oxidation capacity, especially in the polar troposphere during spring. Although sea ice surface is thought to be a significant bromine source, bromine release mechanisms remain unclear. High-resolution ground-based observations of reactive bromine, such as BrO, are important for assessing the potential impacts on tropospheric ozone and evaluating chemical models. However, previous model studies paid little attention to Svalbard, which is surrounded by both open ocean and sea ice. In this paper, we present continuous BrO slant column densities and vertical column densities derived by Multi-Axis Differential Optical Absorption Spectroscopy deployed at Ny-Ålesund (78.92°N, 11.93°E) in March 2017. We focused on one BEE in mid-March, during which the vertical column densities of BrO surged from 4.26 × 1013 molecular cm−2 to the peak at 1.23 × 1014 molecular cm−2 on March 17, surface ozone depleted from a background level of 46.25 parts per billion by volume (ppbv) to 13.9 ppbv. This case study indicates that the BEE was strongly associated with blowing snow induced by the cyclone systems that approached Svalbard from March 14 to 18. By considering meteorological conditions, sea ice coverage, and airmass trajectory history, we demonstrate that sea salt aerosols (SSAs) from blowing snow on sea ice, rather than from open ocean, are attributed to the occurrence of this BEE. Model results from a parallelized-tropospheric offline model of chemistry and transport (p-TOMCAT) indicate that this BEE was mainly triggered by a blowing snow event associated with a low-pressure cyclone system. The concentration of blowing-snow-sourced SSAs surged to peak when the airmass pass across the sea-ice-covered area under high wind speed, which is a critical factor in the process of bromine explosion observed in Ny-Ålesund. Due to the coarse resolution, the possible delayed timing of bromine release from SSA and the model-data discrepancies still exist. Article in Journal/Newspaper Arctic Arctic Ny Ålesund Ny-Ålesund Sea ice Svalbard Natural Environment Research Council: NERC Open Research Archive Arctic Svalbard Ny-Ålesund Science of The Total Environment 839 156335 |
institution |
Open Polar |
collection |
Natural Environment Research Council: NERC Open Research Archive |
op_collection_id |
ftnerc |
language |
English |
description |
Bromine explosion events (BEEs) are important processes that influence the atmospheric oxidation capacity, especially in the polar troposphere during spring. Although sea ice surface is thought to be a significant bromine source, bromine release mechanisms remain unclear. High-resolution ground-based observations of reactive bromine, such as BrO, are important for assessing the potential impacts on tropospheric ozone and evaluating chemical models. However, previous model studies paid little attention to Svalbard, which is surrounded by both open ocean and sea ice. In this paper, we present continuous BrO slant column densities and vertical column densities derived by Multi-Axis Differential Optical Absorption Spectroscopy deployed at Ny-Ålesund (78.92°N, 11.93°E) in March 2017. We focused on one BEE in mid-March, during which the vertical column densities of BrO surged from 4.26 × 1013 molecular cm−2 to the peak at 1.23 × 1014 molecular cm−2 on March 17, surface ozone depleted from a background level of 46.25 parts per billion by volume (ppbv) to 13.9 ppbv. This case study indicates that the BEE was strongly associated with blowing snow induced by the cyclone systems that approached Svalbard from March 14 to 18. By considering meteorological conditions, sea ice coverage, and airmass trajectory history, we demonstrate that sea salt aerosols (SSAs) from blowing snow on sea ice, rather than from open ocean, are attributed to the occurrence of this BEE. Model results from a parallelized-tropospheric offline model of chemistry and transport (p-TOMCAT) indicate that this BEE was mainly triggered by a blowing snow event associated with a low-pressure cyclone system. The concentration of blowing-snow-sourced SSAs surged to peak when the airmass pass across the sea-ice-covered area under high wind speed, which is a critical factor in the process of bromine explosion observed in Ny-Ålesund. Due to the coarse resolution, the possible delayed timing of bromine release from SSA and the model-data discrepancies still exist. |
format |
Article in Journal/Newspaper |
author |
Chen, Douxing Luo, Yuhan Yang, Xin Si, Fuqi Dou, Ke Zhou, Haijin Qian, Yuanyuan Hu, Chunqiao Liu, Jianguo Liu, Wenqing |
spellingShingle |
Chen, Douxing Luo, Yuhan Yang, Xin Si, Fuqi Dou, Ke Zhou, Haijin Qian, Yuanyuan Hu, Chunqiao Liu, Jianguo Liu, Wenqing Study of an Arctic blowing snow-induced bromine explosion event in Ny-Ålesund, Svalbard |
author_facet |
Chen, Douxing Luo, Yuhan Yang, Xin Si, Fuqi Dou, Ke Zhou, Haijin Qian, Yuanyuan Hu, Chunqiao Liu, Jianguo Liu, Wenqing |
author_sort |
Chen, Douxing |
title |
Study of an Arctic blowing snow-induced bromine explosion event in Ny-Ålesund, Svalbard |
title_short |
Study of an Arctic blowing snow-induced bromine explosion event in Ny-Ålesund, Svalbard |
title_full |
Study of an Arctic blowing snow-induced bromine explosion event in Ny-Ålesund, Svalbard |
title_fullStr |
Study of an Arctic blowing snow-induced bromine explosion event in Ny-Ålesund, Svalbard |
title_full_unstemmed |
Study of an Arctic blowing snow-induced bromine explosion event in Ny-Ålesund, Svalbard |
title_sort |
study of an arctic blowing snow-induced bromine explosion event in ny-ålesund, svalbard |
publisher |
Elsevier |
publishDate |
2022 |
url |
http://nora.nerc.ac.uk/id/eprint/532691/ https://nora.nerc.ac.uk/id/eprint/532691/1/1-s2.0-S0048969722034325-main.pdf https://www.sciencedirect.com/science/article/pii/S0048969722034325/ |
geographic |
Arctic Svalbard Ny-Ålesund |
geographic_facet |
Arctic Svalbard Ny-Ålesund |
genre |
Arctic Arctic Ny Ålesund Ny-Ålesund Sea ice Svalbard |
genre_facet |
Arctic Arctic Ny Ålesund Ny-Ålesund Sea ice Svalbard |
op_relation |
https://nora.nerc.ac.uk/id/eprint/532691/1/1-s2.0-S0048969722034325-main.pdf Chen, Douxing; Luo, Yuhan; Yang, Xin orcid:0000-0002-3838-9758 Si, Fuqi; Dou, Ke; Zhou, Haijin; Qian, Yuanyuan; Hu, Chunqiao; Liu, Jianguo; Liu, Wenqing. 2022 Study of an Arctic blowing snow-induced bromine explosion event in Ny-Ålesund, Svalbard. Science of The Total Environment, 839, 156335. 13, pp. https://doi.org/10.1016/j.scitotenv.2022.156335 <https://doi.org/10.1016/j.scitotenv.2022.156335> |
op_rights |
cc_by_nc_4 |
op_rightsnorm |
CC-BY-NC |
op_doi |
https://doi.org/10.1016/j.scitotenv.2022.156335 |
container_title |
Science of The Total Environment |
container_volume |
839 |
container_start_page |
156335 |
_version_ |
1766300692115357696 |