A regional (land–ocean) comparison of the seasonal to decadal variability of the Northern Hemisphere jet stream 1871–2011

Seasonal to decadal variations in Northern Hemisphere jet stream latitude and speed over land (Eurasia, North America) and oceanic (North Atlantic, North Pacific) regions are presented for the period 1871–2011 from the Twentieth Century Reanalysis dataset. Significant regional differences are seen o...

Full description

Bibliographic Details
Published in:Climate Dynamics
Main Authors: Hallam, Samantha, Josey, Simon A., McCarthy, Gerard D., Hirschi, Joël J.-M.
Format: Article in Journal/Newspaper
Language:English
Published: 2022
Subjects:
Online Access:http://nora.nerc.ac.uk/id/eprint/532451/
https://nora.nerc.ac.uk/id/eprint/532451/1/Hallam2022_Article_ARegionalLandOceanComparisonOf.pdf
https://doi.org/10.1007/s00382-022-06185-5
id ftnerc:oai:nora.nerc.ac.uk:532451
record_format openpolar
spelling ftnerc:oai:nora.nerc.ac.uk:532451 2023-05-15T17:27:25+02:00 A regional (land–ocean) comparison of the seasonal to decadal variability of the Northern Hemisphere jet stream 1871–2011 Hallam, Samantha Josey, Simon A. McCarthy, Gerard D. Hirschi, Joël J.-M. 2022-02-22 text http://nora.nerc.ac.uk/id/eprint/532451/ https://nora.nerc.ac.uk/id/eprint/532451/1/Hallam2022_Article_ARegionalLandOceanComparisonOf.pdf https://doi.org/10.1007/s00382-022-06185-5 en eng https://nora.nerc.ac.uk/id/eprint/532451/1/Hallam2022_Article_ARegionalLandOceanComparisonOf.pdf Hallam, Samantha; Josey, Simon A. orcid:0000-0002-1683-8831 McCarthy, Gerard D.; Hirschi, Joël J.-M. 2022 A regional (land–ocean) comparison of the seasonal to decadal variability of the Northern Hemisphere jet stream 1871–2011. Climate Dynamics. https://doi.org/10.1007/s00382-022-06185-5 <https://doi.org/10.1007/s00382-022-06185-5> cc_by_4 CC-BY Publication - Article PeerReviewed 2022 ftnerc https://doi.org/10.1007/s00382-022-06185-5 2023-02-04T19:53:10Z Seasonal to decadal variations in Northern Hemisphere jet stream latitude and speed over land (Eurasia, North America) and oceanic (North Atlantic, North Pacific) regions are presented for the period 1871–2011 from the Twentieth Century Reanalysis dataset. Significant regional differences are seen on seasonal to decadal timescales. Seasonally, the jet latitude range is lower over the oceans compared to land, reduced from 20° over Eurasia to 10° over the North Atlantic where the ocean meridional heat transport is greatest. The mean jet latitude range is at a minimum in winter (DJF), particularly along the western boundary of the North Pacific and North Atlantic, where the land-sea contrast and SST gradients are strongest. The 141-year trends in jet latitude and speed show differences on a regional basis. The North Atlantic has significant increasing jet latitude trends in all seasons, up to 3° in winter. Eurasia has significant increasing trends in winter and summer, however, no increase is seen across the North Pacific or North America. Jet speed shows significant increases evident in winter (up to 4.7 ms−1), spring and autumn over the North Atlantic, Eurasia and North America however, over the North Pacific no increase is observed. Long term trends are generally overlaid by multidecadal variability, particularly evident in the North Pacific, where 20-year variability in jet latitude and jet speed are seen, associated with the Pacific Decadal Oscillation which explains 50% of the winter variance in jet latitude since 1940. The results highlight that northern hemisphere jet variability and trends differ on a regional basis (North Atlantic, North Pacific, Eurasia and North America) on seasonal to decadal timescales, suggesting that different mechanisms are influencing the jet latitude and speed. This is important from a climate modelling perspective and for climate predictions in the near and longer term. Article in Journal/Newspaper North Atlantic Natural Environment Research Council: NERC Open Research Archive Pacific Climate Dynamics
institution Open Polar
collection Natural Environment Research Council: NERC Open Research Archive
op_collection_id ftnerc
language English
description Seasonal to decadal variations in Northern Hemisphere jet stream latitude and speed over land (Eurasia, North America) and oceanic (North Atlantic, North Pacific) regions are presented for the period 1871–2011 from the Twentieth Century Reanalysis dataset. Significant regional differences are seen on seasonal to decadal timescales. Seasonally, the jet latitude range is lower over the oceans compared to land, reduced from 20° over Eurasia to 10° over the North Atlantic where the ocean meridional heat transport is greatest. The mean jet latitude range is at a minimum in winter (DJF), particularly along the western boundary of the North Pacific and North Atlantic, where the land-sea contrast and SST gradients are strongest. The 141-year trends in jet latitude and speed show differences on a regional basis. The North Atlantic has significant increasing jet latitude trends in all seasons, up to 3° in winter. Eurasia has significant increasing trends in winter and summer, however, no increase is seen across the North Pacific or North America. Jet speed shows significant increases evident in winter (up to 4.7 ms−1), spring and autumn over the North Atlantic, Eurasia and North America however, over the North Pacific no increase is observed. Long term trends are generally overlaid by multidecadal variability, particularly evident in the North Pacific, where 20-year variability in jet latitude and jet speed are seen, associated with the Pacific Decadal Oscillation which explains 50% of the winter variance in jet latitude since 1940. The results highlight that northern hemisphere jet variability and trends differ on a regional basis (North Atlantic, North Pacific, Eurasia and North America) on seasonal to decadal timescales, suggesting that different mechanisms are influencing the jet latitude and speed. This is important from a climate modelling perspective and for climate predictions in the near and longer term.
format Article in Journal/Newspaper
author Hallam, Samantha
Josey, Simon A.
McCarthy, Gerard D.
Hirschi, Joël J.-M.
spellingShingle Hallam, Samantha
Josey, Simon A.
McCarthy, Gerard D.
Hirschi, Joël J.-M.
A regional (land–ocean) comparison of the seasonal to decadal variability of the Northern Hemisphere jet stream 1871–2011
author_facet Hallam, Samantha
Josey, Simon A.
McCarthy, Gerard D.
Hirschi, Joël J.-M.
author_sort Hallam, Samantha
title A regional (land–ocean) comparison of the seasonal to decadal variability of the Northern Hemisphere jet stream 1871–2011
title_short A regional (land–ocean) comparison of the seasonal to decadal variability of the Northern Hemisphere jet stream 1871–2011
title_full A regional (land–ocean) comparison of the seasonal to decadal variability of the Northern Hemisphere jet stream 1871–2011
title_fullStr A regional (land–ocean) comparison of the seasonal to decadal variability of the Northern Hemisphere jet stream 1871–2011
title_full_unstemmed A regional (land–ocean) comparison of the seasonal to decadal variability of the Northern Hemisphere jet stream 1871–2011
title_sort regional (land–ocean) comparison of the seasonal to decadal variability of the northern hemisphere jet stream 1871–2011
publishDate 2022
url http://nora.nerc.ac.uk/id/eprint/532451/
https://nora.nerc.ac.uk/id/eprint/532451/1/Hallam2022_Article_ARegionalLandOceanComparisonOf.pdf
https://doi.org/10.1007/s00382-022-06185-5
geographic Pacific
geographic_facet Pacific
genre North Atlantic
genre_facet North Atlantic
op_relation https://nora.nerc.ac.uk/id/eprint/532451/1/Hallam2022_Article_ARegionalLandOceanComparisonOf.pdf
Hallam, Samantha; Josey, Simon A. orcid:0000-0002-1683-8831
McCarthy, Gerard D.; Hirschi, Joël J.-M. 2022 A regional (land–ocean) comparison of the seasonal to decadal variability of the Northern Hemisphere jet stream 1871–2011. Climate Dynamics. https://doi.org/10.1007/s00382-022-06185-5 <https://doi.org/10.1007/s00382-022-06185-5>
op_rights cc_by_4
op_rightsnorm CC-BY
op_doi https://doi.org/10.1007/s00382-022-06185-5
container_title Climate Dynamics
_version_ 1766119488929923072