Spatial variations in silicate-to-nitrate ratios in Southern Ocean surface waters are controlled in the short term by physics rather than biology

The nutrient composition (high in nitrate but low in silicate) of Subantarctic Mode Water (SAMW) forces diatom scarcity across much of the global surface ocean. This is because diatoms cannot grow without silicate. After formation and downwelling at the Southern Ocean's northern edge, SAMW re-e...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Demuynck, Pieter, Tyrrell, Toby, Naveira Garabato, Alberto, Moore, Mark Christopher, Martin, Adrian Peter
Format: Article in Journal/Newspaper
Language:English
Published: 2020
Subjects:
Online Access:http://nora.nerc.ac.uk/id/eprint/527953/
https://nora.nerc.ac.uk/id/eprint/527953/1/bg-17-2289-2020.pdf
https://doi.org/10.5194/bg-17-2289-2020
id ftnerc:oai:nora.nerc.ac.uk:527953
record_format openpolar
spelling ftnerc:oai:nora.nerc.ac.uk:527953 2023-05-15T18:23:52+02:00 Spatial variations in silicate-to-nitrate ratios in Southern Ocean surface waters are controlled in the short term by physics rather than biology Demuynck, Pieter Tyrrell, Toby Naveira Garabato, Alberto Moore, Mark Christopher Martin, Adrian Peter 2020-04-22 text http://nora.nerc.ac.uk/id/eprint/527953/ https://nora.nerc.ac.uk/id/eprint/527953/1/bg-17-2289-2020.pdf https://doi.org/10.5194/bg-17-2289-2020 en eng https://nora.nerc.ac.uk/id/eprint/527953/1/bg-17-2289-2020.pdf Demuynck, Pieter; Tyrrell, Toby; Naveira Garabato, Alberto; Moore, Mark Christopher; Martin, Adrian Peter orcid:0000-0002-1202-8612 . 2020 Spatial variations in silicate-to-nitrate ratios in Southern Ocean surface waters are controlled in the short term by physics rather than biology. Biogeosciences, 17 (8). 2289-2314. https://doi.org/10.5194/bg-17-2289-2020 <https://doi.org/10.5194/bg-17-2289-2020> cc_by_4 CC-BY Publication - Article PeerReviewed 2020 ftnerc https://doi.org/10.5194/bg-17-2289-2020 2023-02-04T19:50:47Z The nutrient composition (high in nitrate but low in silicate) of Subantarctic Mode Water (SAMW) forces diatom scarcity across much of the global surface ocean. This is because diatoms cannot grow without silicate. After formation and downwelling at the Southern Ocean's northern edge, SAMW re-emerges into the surface layers of the mid- and low-latitude oceans, providing a major nutrient source to primary producers in those regions. The distinctive nutrient composition of SAMW originates in the surface waters of the Southern Ocean, from which SAMW is formed. These waters are observed to transition from being rich in both silicate and nitrate in high-latitude areas of the Southern Ocean to being nitrate-rich but silicate-depleted at SAMW formation sites further north. Here we investigate the key controls of this change in nutrient composition with an idealised model, consisting of a chain of boxes linked by a residual (Ekman- and eddy-induced) overturning circulation. Biological processes are modelled on the basis of seasonal plankton bloom dynamics, and physical processes are modelled using a synthesis of outputs from the data-assimilative Southern Ocean State Estimate. Thus, as surface water flows northward across the Southern Ocean toward sites of SAMW formation, it is exposed in the model (as in reality) to seasonal cycles of both biology and physics. Our results challenge previous characterisations of the abrupt northward reduction in silicate-to-nitrate ratios in Southern Ocean surface waters as being predominantly driven by biological processes. Instead, our model indicates that, over shorter timescales (years to decades), physical processes connecting the deep and surface waters of the Southern Ocean (i.e. upwelling and entrainment) exert the primary control on the spatial distribution of surface nutrient ratios. Article in Journal/Newspaper Southern Ocean Natural Environment Research Council: NERC Open Research Archive Southern Ocean Biogeosciences 17 8 2289 2314
institution Open Polar
collection Natural Environment Research Council: NERC Open Research Archive
op_collection_id ftnerc
language English
description The nutrient composition (high in nitrate but low in silicate) of Subantarctic Mode Water (SAMW) forces diatom scarcity across much of the global surface ocean. This is because diatoms cannot grow without silicate. After formation and downwelling at the Southern Ocean's northern edge, SAMW re-emerges into the surface layers of the mid- and low-latitude oceans, providing a major nutrient source to primary producers in those regions. The distinctive nutrient composition of SAMW originates in the surface waters of the Southern Ocean, from which SAMW is formed. These waters are observed to transition from being rich in both silicate and nitrate in high-latitude areas of the Southern Ocean to being nitrate-rich but silicate-depleted at SAMW formation sites further north. Here we investigate the key controls of this change in nutrient composition with an idealised model, consisting of a chain of boxes linked by a residual (Ekman- and eddy-induced) overturning circulation. Biological processes are modelled on the basis of seasonal plankton bloom dynamics, and physical processes are modelled using a synthesis of outputs from the data-assimilative Southern Ocean State Estimate. Thus, as surface water flows northward across the Southern Ocean toward sites of SAMW formation, it is exposed in the model (as in reality) to seasonal cycles of both biology and physics. Our results challenge previous characterisations of the abrupt northward reduction in silicate-to-nitrate ratios in Southern Ocean surface waters as being predominantly driven by biological processes. Instead, our model indicates that, over shorter timescales (years to decades), physical processes connecting the deep and surface waters of the Southern Ocean (i.e. upwelling and entrainment) exert the primary control on the spatial distribution of surface nutrient ratios.
format Article in Journal/Newspaper
author Demuynck, Pieter
Tyrrell, Toby
Naveira Garabato, Alberto
Moore, Mark Christopher
Martin, Adrian Peter
spellingShingle Demuynck, Pieter
Tyrrell, Toby
Naveira Garabato, Alberto
Moore, Mark Christopher
Martin, Adrian Peter
Spatial variations in silicate-to-nitrate ratios in Southern Ocean surface waters are controlled in the short term by physics rather than biology
author_facet Demuynck, Pieter
Tyrrell, Toby
Naveira Garabato, Alberto
Moore, Mark Christopher
Martin, Adrian Peter
author_sort Demuynck, Pieter
title Spatial variations in silicate-to-nitrate ratios in Southern Ocean surface waters are controlled in the short term by physics rather than biology
title_short Spatial variations in silicate-to-nitrate ratios in Southern Ocean surface waters are controlled in the short term by physics rather than biology
title_full Spatial variations in silicate-to-nitrate ratios in Southern Ocean surface waters are controlled in the short term by physics rather than biology
title_fullStr Spatial variations in silicate-to-nitrate ratios in Southern Ocean surface waters are controlled in the short term by physics rather than biology
title_full_unstemmed Spatial variations in silicate-to-nitrate ratios in Southern Ocean surface waters are controlled in the short term by physics rather than biology
title_sort spatial variations in silicate-to-nitrate ratios in southern ocean surface waters are controlled in the short term by physics rather than biology
publishDate 2020
url http://nora.nerc.ac.uk/id/eprint/527953/
https://nora.nerc.ac.uk/id/eprint/527953/1/bg-17-2289-2020.pdf
https://doi.org/10.5194/bg-17-2289-2020
geographic Southern Ocean
geographic_facet Southern Ocean
genre Southern Ocean
genre_facet Southern Ocean
op_relation https://nora.nerc.ac.uk/id/eprint/527953/1/bg-17-2289-2020.pdf
Demuynck, Pieter; Tyrrell, Toby; Naveira Garabato, Alberto; Moore, Mark Christopher; Martin, Adrian Peter orcid:0000-0002-1202-8612 . 2020 Spatial variations in silicate-to-nitrate ratios in Southern Ocean surface waters are controlled in the short term by physics rather than biology. Biogeosciences, 17 (8). 2289-2314. https://doi.org/10.5194/bg-17-2289-2020 <https://doi.org/10.5194/bg-17-2289-2020>
op_rights cc_by_4
op_rightsnorm CC-BY
op_doi https://doi.org/10.5194/bg-17-2289-2020
container_title Biogeosciences
container_volume 17
container_issue 8
container_start_page 2289
op_container_end_page 2314
_version_ 1766204049888116736