Highly branched isoprenoids reveal onset of deglaciation followed by dynamic sea-ice conditions in the western Amundsen Sea, Antarctica
The Amundsen Sea drainage sector of the West Antarctic Ice Sheet (WAIS) is widely regarded as a candidate for triggering potential WAIS collapse. The grounded ice sheet drains into the Amundsen Sea Embayment and is thereby buttressed by its fringing ice shelves, which have thinned at an alarming rat...
Published in: | Quaternary Science Reviews |
---|---|
Main Authors: | , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Elsevier
2020
|
Subjects: | |
Online Access: | http://nora.nerc.ac.uk/id/eprint/526252/ https://nora.nerc.ac.uk/id/eprint/526252/1/1-s2.0-S0277379119306535-main.pdf https://nora.nerc.ac.uk/id/eprint/526252/7/Lamping_corrigendum.pdf https://www.sciencedirect.com/science/article/pii/S0277379119306535 |
id |
ftnerc:oai:nora.nerc.ac.uk:526252 |
---|---|
record_format |
openpolar |
spelling |
ftnerc:oai:nora.nerc.ac.uk:526252 2023-05-15T13:23:35+02:00 Highly branched isoprenoids reveal onset of deglaciation followed by dynamic sea-ice conditions in the western Amundsen Sea, Antarctica Lamping, Nele Müller, Juliane Esper, Oliver Hillenbrand, Claus-Dieter Smith, James A. Kuhn, Gerhard 2020-01-15 text http://nora.nerc.ac.uk/id/eprint/526252/ https://nora.nerc.ac.uk/id/eprint/526252/1/1-s2.0-S0277379119306535-main.pdf https://nora.nerc.ac.uk/id/eprint/526252/7/Lamping_corrigendum.pdf https://www.sciencedirect.com/science/article/pii/S0277379119306535 en eng Elsevier https://nora.nerc.ac.uk/id/eprint/526252/1/1-s2.0-S0277379119306535-main.pdf https://nora.nerc.ac.uk/id/eprint/526252/7/Lamping_corrigendum.pdf Lamping, Nele; Müller, Juliane; Esper, Oliver; Hillenbrand, Claus-Dieter orcid:0000-0003-0240-7317 Smith, James A. orcid:0000-0002-1333-2544 Kuhn, Gerhard. 2020 Highly branched isoprenoids reveal onset of deglaciation followed by dynamic sea-ice conditions in the western Amundsen Sea, Antarctica. Quaternary Science Reviews, 228, 106103. https://doi.org/10.1016/j.quascirev.2019.106103 <https://doi.org/10.1016/j.quascirev.2019.106103> cc_by_nc_nd_4 cc_by_nc_nd CC-BY-NC-ND Publication - Article PeerReviewed 2020 ftnerc https://doi.org/10.1016/j.quascirev.2019.106103 2023-02-04T19:49:50Z The Amundsen Sea drainage sector of the West Antarctic Ice Sheet (WAIS) is widely regarded as a candidate for triggering potential WAIS collapse. The grounded ice sheet drains into the Amundsen Sea Embayment and is thereby buttressed by its fringing ice shelves, which have thinned at an alarming rate. Satellite-based observations additionally reveal a considerable long-term decrease in sea-ice cover in the Amundsen Sea over the last two decades although the long-term significance of this trend is unclear due to the short instrumental record since the 1970s. In this context, investigations of past sea-ice conditions are crucial for improving our understanding of the influence that sea-ice variability has on the adjacent marine environment as well as any role it plays in modulating ice shelf and ice sheet dynamics. In this study, we apply novel organic geochemical biomarker techniques to a marine sediment core from the western Amundsen Sea shelf in order to provide a valuable long-term perspective on sea-ice conditions and the retreat of the Getz Ice Shelf during the last deglaciation. We analysed a specific biomarker lipid called IPSO25 alongside a phytoplankton biomarker and sedimentological parameters and additionally applied diatom transfer functions for reconstructing palaeo sea-ice coverage. This multi-proxy data set reveals a dynamic behaviour of the Getz Ice Shelf and sea-ice cover during the deglaciation following the last ice age, with potential linkages to inter-hemispheric seesaw climate patterns. We further apply and evaluate the recently proposed PIPSO25 approach for semi-quantitative sea-ice reconstructions and discuss potential limitations. Article in Journal/Newspaper Amundsen Sea Antarc* Antarctic Antarctica Getz Ice Shelf Ice Sheet Ice Shelf Ice Shelves Sea ice Natural Environment Research Council: NERC Open Research Archive Antarctic Amundsen Sea West Antarctic Ice Sheet Getz ENVELOPE(-145.217,-145.217,-76.550,-76.550) Getz Ice Shelf ENVELOPE(-126.500,-126.500,-74.250,-74.250) Quaternary Science Reviews 228 106103 |
institution |
Open Polar |
collection |
Natural Environment Research Council: NERC Open Research Archive |
op_collection_id |
ftnerc |
language |
English |
description |
The Amundsen Sea drainage sector of the West Antarctic Ice Sheet (WAIS) is widely regarded as a candidate for triggering potential WAIS collapse. The grounded ice sheet drains into the Amundsen Sea Embayment and is thereby buttressed by its fringing ice shelves, which have thinned at an alarming rate. Satellite-based observations additionally reveal a considerable long-term decrease in sea-ice cover in the Amundsen Sea over the last two decades although the long-term significance of this trend is unclear due to the short instrumental record since the 1970s. In this context, investigations of past sea-ice conditions are crucial for improving our understanding of the influence that sea-ice variability has on the adjacent marine environment as well as any role it plays in modulating ice shelf and ice sheet dynamics. In this study, we apply novel organic geochemical biomarker techniques to a marine sediment core from the western Amundsen Sea shelf in order to provide a valuable long-term perspective on sea-ice conditions and the retreat of the Getz Ice Shelf during the last deglaciation. We analysed a specific biomarker lipid called IPSO25 alongside a phytoplankton biomarker and sedimentological parameters and additionally applied diatom transfer functions for reconstructing palaeo sea-ice coverage. This multi-proxy data set reveals a dynamic behaviour of the Getz Ice Shelf and sea-ice cover during the deglaciation following the last ice age, with potential linkages to inter-hemispheric seesaw climate patterns. We further apply and evaluate the recently proposed PIPSO25 approach for semi-quantitative sea-ice reconstructions and discuss potential limitations. |
format |
Article in Journal/Newspaper |
author |
Lamping, Nele Müller, Juliane Esper, Oliver Hillenbrand, Claus-Dieter Smith, James A. Kuhn, Gerhard |
spellingShingle |
Lamping, Nele Müller, Juliane Esper, Oliver Hillenbrand, Claus-Dieter Smith, James A. Kuhn, Gerhard Highly branched isoprenoids reveal onset of deglaciation followed by dynamic sea-ice conditions in the western Amundsen Sea, Antarctica |
author_facet |
Lamping, Nele Müller, Juliane Esper, Oliver Hillenbrand, Claus-Dieter Smith, James A. Kuhn, Gerhard |
author_sort |
Lamping, Nele |
title |
Highly branched isoprenoids reveal onset of deglaciation followed by dynamic sea-ice conditions in the western Amundsen Sea, Antarctica |
title_short |
Highly branched isoprenoids reveal onset of deglaciation followed by dynamic sea-ice conditions in the western Amundsen Sea, Antarctica |
title_full |
Highly branched isoprenoids reveal onset of deglaciation followed by dynamic sea-ice conditions in the western Amundsen Sea, Antarctica |
title_fullStr |
Highly branched isoprenoids reveal onset of deglaciation followed by dynamic sea-ice conditions in the western Amundsen Sea, Antarctica |
title_full_unstemmed |
Highly branched isoprenoids reveal onset of deglaciation followed by dynamic sea-ice conditions in the western Amundsen Sea, Antarctica |
title_sort |
highly branched isoprenoids reveal onset of deglaciation followed by dynamic sea-ice conditions in the western amundsen sea, antarctica |
publisher |
Elsevier |
publishDate |
2020 |
url |
http://nora.nerc.ac.uk/id/eprint/526252/ https://nora.nerc.ac.uk/id/eprint/526252/1/1-s2.0-S0277379119306535-main.pdf https://nora.nerc.ac.uk/id/eprint/526252/7/Lamping_corrigendum.pdf https://www.sciencedirect.com/science/article/pii/S0277379119306535 |
long_lat |
ENVELOPE(-145.217,-145.217,-76.550,-76.550) ENVELOPE(-126.500,-126.500,-74.250,-74.250) |
geographic |
Antarctic Amundsen Sea West Antarctic Ice Sheet Getz Getz Ice Shelf |
geographic_facet |
Antarctic Amundsen Sea West Antarctic Ice Sheet Getz Getz Ice Shelf |
genre |
Amundsen Sea Antarc* Antarctic Antarctica Getz Ice Shelf Ice Sheet Ice Shelf Ice Shelves Sea ice |
genre_facet |
Amundsen Sea Antarc* Antarctic Antarctica Getz Ice Shelf Ice Sheet Ice Shelf Ice Shelves Sea ice |
op_relation |
https://nora.nerc.ac.uk/id/eprint/526252/1/1-s2.0-S0277379119306535-main.pdf https://nora.nerc.ac.uk/id/eprint/526252/7/Lamping_corrigendum.pdf Lamping, Nele; Müller, Juliane; Esper, Oliver; Hillenbrand, Claus-Dieter orcid:0000-0003-0240-7317 Smith, James A. orcid:0000-0002-1333-2544 Kuhn, Gerhard. 2020 Highly branched isoprenoids reveal onset of deglaciation followed by dynamic sea-ice conditions in the western Amundsen Sea, Antarctica. Quaternary Science Reviews, 228, 106103. https://doi.org/10.1016/j.quascirev.2019.106103 <https://doi.org/10.1016/j.quascirev.2019.106103> |
op_rights |
cc_by_nc_nd_4 cc_by_nc_nd |
op_rightsnorm |
CC-BY-NC-ND |
op_doi |
https://doi.org/10.1016/j.quascirev.2019.106103 |
container_title |
Quaternary Science Reviews |
container_volume |
228 |
container_start_page |
106103 |
_version_ |
1766373307946369024 |