Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise

Using 8‐25s period Rayleigh and Love wave phase velocity dispersion data extracted from seismic ambient noise, we (i) model the 3D shear wave velocity structure of the West Antarctic crust and (ii) map variations in crustal radial anisotropy. Enhanced regional resolution is offered by the UK Antarct...

Full description

Bibliographic Details
Published in:Geochemistry, Geophysics, Geosystems
Main Authors: O'Donnell, J.P., Brisbourne, A.M., Stuart, G.W., Dunham, C.K., Yang, Y., Nield, G.A., Whitehouse, P.L., Nyblade, A.A., Wiens, D.A., Anadakrishnan, S., Aster, R.C., Huerta, A.D., Lloyd, A.J., Wilson, T., Winberry, J.P.
Format: Article in Journal/Newspaper
Language:English
Published: American Geophysical Union 2019
Subjects:
Online Access:http://nora.nerc.ac.uk/id/eprint/523466/
https://nora.nerc.ac.uk/id/eprint/523466/1/2019GC008459.pdf
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GC008459
id ftnerc:oai:nora.nerc.ac.uk:523466
record_format openpolar
spelling ftnerc:oai:nora.nerc.ac.uk:523466 2024-02-11T09:55:20+01:00 Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise O'Donnell, J.P. Brisbourne, A.M. Stuart, G.W. Dunham, C.K. Yang, Y. Nield, G.A. Whitehouse, P.L. Nyblade, A.A. Wiens, D.A. Anadakrishnan, S. Aster, R.C. Huerta, A.D. Lloyd, A.J. Wilson, T. Winberry, J.P. 2019-12-26 text http://nora.nerc.ac.uk/id/eprint/523466/ https://nora.nerc.ac.uk/id/eprint/523466/1/2019GC008459.pdf https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GC008459 en eng American Geophysical Union https://nora.nerc.ac.uk/id/eprint/523466/1/2019GC008459.pdf O'Donnell, J.P.; Brisbourne, A.M. orcid:0000-0002-9887-7120 Stuart, G.W.; Dunham, C.K.; Yang, Y.; Nield, G.A.; Whitehouse, P.L.; Nyblade, A.A.; Wiens, D.A.; Anadakrishnan, S.; Aster, R.C.; Huerta, A.D.; Lloyd, A.J.; Wilson, T.; Winberry, J.P. 2019 Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise. Geochemistry, Geophysics, Geosystems, 20 (11). 5014-5037. https://doi.org/10.1029/2019GC008459 <https://doi.org/10.1029/2019GC008459> Publication - Article PeerReviewed 2019 ftnerc https://doi.org/10.1029/2019GC008459 2024-01-19T00:03:13Z Using 8‐25s period Rayleigh and Love wave phase velocity dispersion data extracted from seismic ambient noise, we (i) model the 3D shear wave velocity structure of the West Antarctic crust and (ii) map variations in crustal radial anisotropy. Enhanced regional resolution is offered by the UK Antarctic Seismic Network. In the West Antarctic Rift System (WARS), a ridge of crust ~26‐30km thick extending south from Marie Byrd Land separates domains of more extended crust (~22km thick) in the Ross and Amundsen Sea Embayments, suggesting along‐strike variability in the Cenozoic evolution of the WARS. The southern margin of the WARS is defined along the southern Transantarctic Mountains (TAM) and Haag Nunataks‐Ellsworth Whitmore Mountains (HEW) block by a sharp crustal thickness gradient. Crust ~35‐40km is modelled beneath the Haag Nunataks‐Ellsworth Mountains, decreasing to $\sim$30‐32\,km km thick beneath the Whitmore Mountains, reflecting distinct structural domains within the composite HEW block. Our analysis suggests that the lower crust and potentially the mid crust is positively radially anisotropic (VSH > VSV) across West Antarctica. The strongest anisotropic signature is observed in the HEW block, emphasising its unique provenance amongst West Antarctica's crustal units, and conceivably reflects a ~13\,km thick metasedimentary succession atop Precambrian metamorphic basement. Positive radial anisotropy in the WARS crust is consistent with observations in extensional settings, and likely reflects the lattice‐preferred orientation of minerals such as mica and amphibole by extensional deformation. Our observations support a contention that anisotropy may be ubiquitous in continental crust. Article in Journal/Newspaper Amundsen Sea Antarc* Antarctic Antarctica Marie Byrd Land West Antarctica Natural Environment Research Council: NERC Open Research Archive Antarctic West Antarctica Amundsen Sea Transantarctic Mountains Byrd Marie Byrd Land ENVELOPE(-130.000,-130.000,-78.000,-78.000) Ellsworth Mountains ENVELOPE(-85.000,-85.000,-78.750,-78.750) Haag ENVELOPE(-79.000,-79.000,-77.667,-77.667) Whitmore Mountains ENVELOPE(-104.000,-104.000,-82.500,-82.500) Haag Nunataks ENVELOPE(-78.400,-78.400,-77.000,-77.000) Geochemistry, Geophysics, Geosystems 20 11 5014 5037
institution Open Polar
collection Natural Environment Research Council: NERC Open Research Archive
op_collection_id ftnerc
language English
description Using 8‐25s period Rayleigh and Love wave phase velocity dispersion data extracted from seismic ambient noise, we (i) model the 3D shear wave velocity structure of the West Antarctic crust and (ii) map variations in crustal radial anisotropy. Enhanced regional resolution is offered by the UK Antarctic Seismic Network. In the West Antarctic Rift System (WARS), a ridge of crust ~26‐30km thick extending south from Marie Byrd Land separates domains of more extended crust (~22km thick) in the Ross and Amundsen Sea Embayments, suggesting along‐strike variability in the Cenozoic evolution of the WARS. The southern margin of the WARS is defined along the southern Transantarctic Mountains (TAM) and Haag Nunataks‐Ellsworth Whitmore Mountains (HEW) block by a sharp crustal thickness gradient. Crust ~35‐40km is modelled beneath the Haag Nunataks‐Ellsworth Mountains, decreasing to $\sim$30‐32\,km km thick beneath the Whitmore Mountains, reflecting distinct structural domains within the composite HEW block. Our analysis suggests that the lower crust and potentially the mid crust is positively radially anisotropic (VSH > VSV) across West Antarctica. The strongest anisotropic signature is observed in the HEW block, emphasising its unique provenance amongst West Antarctica's crustal units, and conceivably reflects a ~13\,km thick metasedimentary succession atop Precambrian metamorphic basement. Positive radial anisotropy in the WARS crust is consistent with observations in extensional settings, and likely reflects the lattice‐preferred orientation of minerals such as mica and amphibole by extensional deformation. Our observations support a contention that anisotropy may be ubiquitous in continental crust.
format Article in Journal/Newspaper
author O'Donnell, J.P.
Brisbourne, A.M.
Stuart, G.W.
Dunham, C.K.
Yang, Y.
Nield, G.A.
Whitehouse, P.L.
Nyblade, A.A.
Wiens, D.A.
Anadakrishnan, S.
Aster, R.C.
Huerta, A.D.
Lloyd, A.J.
Wilson, T.
Winberry, J.P.
spellingShingle O'Donnell, J.P.
Brisbourne, A.M.
Stuart, G.W.
Dunham, C.K.
Yang, Y.
Nield, G.A.
Whitehouse, P.L.
Nyblade, A.A.
Wiens, D.A.
Anadakrishnan, S.
Aster, R.C.
Huerta, A.D.
Lloyd, A.J.
Wilson, T.
Winberry, J.P.
Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise
author_facet O'Donnell, J.P.
Brisbourne, A.M.
Stuart, G.W.
Dunham, C.K.
Yang, Y.
Nield, G.A.
Whitehouse, P.L.
Nyblade, A.A.
Wiens, D.A.
Anadakrishnan, S.
Aster, R.C.
Huerta, A.D.
Lloyd, A.J.
Wilson, T.
Winberry, J.P.
author_sort O'Donnell, J.P.
title Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise
title_short Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise
title_full Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise
title_fullStr Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise
title_full_unstemmed Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise
title_sort mapping crustal shear wave velocity structure and radial anisotropy beneath west antarctica using seismic ambient noise
publisher American Geophysical Union
publishDate 2019
url http://nora.nerc.ac.uk/id/eprint/523466/
https://nora.nerc.ac.uk/id/eprint/523466/1/2019GC008459.pdf
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GC008459
long_lat ENVELOPE(-130.000,-130.000,-78.000,-78.000)
ENVELOPE(-85.000,-85.000,-78.750,-78.750)
ENVELOPE(-79.000,-79.000,-77.667,-77.667)
ENVELOPE(-104.000,-104.000,-82.500,-82.500)
ENVELOPE(-78.400,-78.400,-77.000,-77.000)
geographic Antarctic
West Antarctica
Amundsen Sea
Transantarctic Mountains
Byrd
Marie Byrd Land
Ellsworth Mountains
Haag
Whitmore Mountains
Haag Nunataks
geographic_facet Antarctic
West Antarctica
Amundsen Sea
Transantarctic Mountains
Byrd
Marie Byrd Land
Ellsworth Mountains
Haag
Whitmore Mountains
Haag Nunataks
genre Amundsen Sea
Antarc*
Antarctic
Antarctica
Marie Byrd Land
West Antarctica
genre_facet Amundsen Sea
Antarc*
Antarctic
Antarctica
Marie Byrd Land
West Antarctica
op_relation https://nora.nerc.ac.uk/id/eprint/523466/1/2019GC008459.pdf
O'Donnell, J.P.; Brisbourne, A.M. orcid:0000-0002-9887-7120
Stuart, G.W.; Dunham, C.K.; Yang, Y.; Nield, G.A.; Whitehouse, P.L.; Nyblade, A.A.; Wiens, D.A.; Anadakrishnan, S.; Aster, R.C.; Huerta, A.D.; Lloyd, A.J.; Wilson, T.; Winberry, J.P. 2019 Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise. Geochemistry, Geophysics, Geosystems, 20 (11). 5014-5037. https://doi.org/10.1029/2019GC008459 <https://doi.org/10.1029/2019GC008459>
op_doi https://doi.org/10.1029/2019GC008459
container_title Geochemistry, Geophysics, Geosystems
container_volume 20
container_issue 11
container_start_page 5014
op_container_end_page 5037
_version_ 1790595047669891072