The subpolar gyre regulates silicate concentrations in the North Atlantic

The North Atlantic is characterized by diatom-dominated spring blooms that results in significant transfer of carbon to higher trophic levels and the deep ocean. These blooms are terminated by limiting silicate concentrations in summer. Numerous regional studies have demonstrated phytoplankton commu...

Full description

Bibliographic Details
Published in:Scientific Reports
Main Authors: Hátún, H., Azetsu-Scott, K., Somavilla, R., Rey, F., Johnson, C., Mathis, M., Mikolajewicz, U., Coupel, P., Tremblay, J.-É., Hartman, S., Pacariz, S.V., Salter, I., Ólafsson, J.
Format: Article in Journal/Newspaper
Language:English
Published: 2017
Subjects:
Online Access:http://nora.nerc.ac.uk/id/eprint/518642/
https://nora.nerc.ac.uk/id/eprint/518642/1/H-t-n_et_al-2017-Scientific_Reports.pdf
https://doi.org/10.1038/s41598-017-14837-4
id ftnerc:oai:nora.nerc.ac.uk:518642
record_format openpolar
spelling ftnerc:oai:nora.nerc.ac.uk:518642 2023-05-15T15:07:23+02:00 The subpolar gyre regulates silicate concentrations in the North Atlantic Hátún, H. Azetsu-Scott, K. Somavilla, R. Rey, F. Johnson, C. Mathis, M. Mikolajewicz, U. Coupel, P. Tremblay, J.-É. Hartman, S. Pacariz, S.V. Salter, I. Ólafsson, J. 2017-12 text http://nora.nerc.ac.uk/id/eprint/518642/ https://nora.nerc.ac.uk/id/eprint/518642/1/H-t-n_et_al-2017-Scientific_Reports.pdf https://doi.org/10.1038/s41598-017-14837-4 en eng https://nora.nerc.ac.uk/id/eprint/518642/1/H-t-n_et_al-2017-Scientific_Reports.pdf Hátún, H.; Azetsu-Scott, K.; Somavilla, R.; Rey, F.; Johnson, C.; Mathis, M.; Mikolajewicz, U.; Coupel, P.; Tremblay, J.-É.; Hartman, S. orcid:0000-0002-6363-1331 Pacariz, S.V.; Salter, I.; Ólafsson, J. 2017 The subpolar gyre regulates silicate concentrations in the North Atlantic. Scientific Reports, 7 (1). 14576. https://doi.org/10.1038/s41598-017-14837-4 <https://doi.org/10.1038/s41598-017-14837-4> cc_by_4 CC-BY Publication - Article PeerReviewed 2017 ftnerc https://doi.org/10.1038/s41598-017-14837-4 2023-02-04T19:45:46Z The North Atlantic is characterized by diatom-dominated spring blooms that results in significant transfer of carbon to higher trophic levels and the deep ocean. These blooms are terminated by limiting silicate concentrations in summer. Numerous regional studies have demonstrated phytoplankton community shifts to lightly-silicified diatoms and non-silicifying plankton at the onset of silicate limitation. However, to understand basin-scale patterns in ecosystem and climate dynamics, nutrient inventories must be examined over sufficient temporal and spatial scales. Here we show, from a new comprehensive compilation of data from the subpolar Atlantic Ocean, clear evidence of a marked pre-bloom silicate decline of 1.5–2 µM throughout the winter mixed layer during the last 25 years. This silicate decrease is primarily attributed to natural multi-decadal variability through decreased winter convection depths since the mid-1990s, a weakening and retraction of the subpolar gyre and an associated increased influence of nutrient-poor water of subtropical origin. Reduced Arctic silicate import and the projected hemispheric-scale climate change-induced weakening of vertical mixing may have acted to amplify the recent decline. These marked fluctuations in pre-bloom silicate inventories will likely have important consequences for the spatial and temporal extent of diatom blooms, thus impacting ecosystem productivity and ocean-atmosphere climate dynamics. Article in Journal/Newspaper Arctic Climate change North Atlantic Phytoplankton Natural Environment Research Council: NERC Open Research Archive Arctic Scientific Reports 7 1
institution Open Polar
collection Natural Environment Research Council: NERC Open Research Archive
op_collection_id ftnerc
language English
description The North Atlantic is characterized by diatom-dominated spring blooms that results in significant transfer of carbon to higher trophic levels and the deep ocean. These blooms are terminated by limiting silicate concentrations in summer. Numerous regional studies have demonstrated phytoplankton community shifts to lightly-silicified diatoms and non-silicifying plankton at the onset of silicate limitation. However, to understand basin-scale patterns in ecosystem and climate dynamics, nutrient inventories must be examined over sufficient temporal and spatial scales. Here we show, from a new comprehensive compilation of data from the subpolar Atlantic Ocean, clear evidence of a marked pre-bloom silicate decline of 1.5–2 µM throughout the winter mixed layer during the last 25 years. This silicate decrease is primarily attributed to natural multi-decadal variability through decreased winter convection depths since the mid-1990s, a weakening and retraction of the subpolar gyre and an associated increased influence of nutrient-poor water of subtropical origin. Reduced Arctic silicate import and the projected hemispheric-scale climate change-induced weakening of vertical mixing may have acted to amplify the recent decline. These marked fluctuations in pre-bloom silicate inventories will likely have important consequences for the spatial and temporal extent of diatom blooms, thus impacting ecosystem productivity and ocean-atmosphere climate dynamics.
format Article in Journal/Newspaper
author Hátún, H.
Azetsu-Scott, K.
Somavilla, R.
Rey, F.
Johnson, C.
Mathis, M.
Mikolajewicz, U.
Coupel, P.
Tremblay, J.-É.
Hartman, S.
Pacariz, S.V.
Salter, I.
Ólafsson, J.
spellingShingle Hátún, H.
Azetsu-Scott, K.
Somavilla, R.
Rey, F.
Johnson, C.
Mathis, M.
Mikolajewicz, U.
Coupel, P.
Tremblay, J.-É.
Hartman, S.
Pacariz, S.V.
Salter, I.
Ólafsson, J.
The subpolar gyre regulates silicate concentrations in the North Atlantic
author_facet Hátún, H.
Azetsu-Scott, K.
Somavilla, R.
Rey, F.
Johnson, C.
Mathis, M.
Mikolajewicz, U.
Coupel, P.
Tremblay, J.-É.
Hartman, S.
Pacariz, S.V.
Salter, I.
Ólafsson, J.
author_sort Hátún, H.
title The subpolar gyre regulates silicate concentrations in the North Atlantic
title_short The subpolar gyre regulates silicate concentrations in the North Atlantic
title_full The subpolar gyre regulates silicate concentrations in the North Atlantic
title_fullStr The subpolar gyre regulates silicate concentrations in the North Atlantic
title_full_unstemmed The subpolar gyre regulates silicate concentrations in the North Atlantic
title_sort subpolar gyre regulates silicate concentrations in the north atlantic
publishDate 2017
url http://nora.nerc.ac.uk/id/eprint/518642/
https://nora.nerc.ac.uk/id/eprint/518642/1/H-t-n_et_al-2017-Scientific_Reports.pdf
https://doi.org/10.1038/s41598-017-14837-4
geographic Arctic
geographic_facet Arctic
genre Arctic
Climate change
North Atlantic
Phytoplankton
genre_facet Arctic
Climate change
North Atlantic
Phytoplankton
op_relation https://nora.nerc.ac.uk/id/eprint/518642/1/H-t-n_et_al-2017-Scientific_Reports.pdf
Hátún, H.; Azetsu-Scott, K.; Somavilla, R.; Rey, F.; Johnson, C.; Mathis, M.; Mikolajewicz, U.; Coupel, P.; Tremblay, J.-É.; Hartman, S. orcid:0000-0002-6363-1331
Pacariz, S.V.; Salter, I.; Ólafsson, J. 2017 The subpolar gyre regulates silicate concentrations in the North Atlantic. Scientific Reports, 7 (1). 14576. https://doi.org/10.1038/s41598-017-14837-4 <https://doi.org/10.1038/s41598-017-14837-4>
op_rights cc_by_4
op_rightsnorm CC-BY
op_doi https://doi.org/10.1038/s41598-017-14837-4
container_title Scientific Reports
container_volume 7
container_issue 1
_version_ 1766338909605724160