Investigating vegetation-climate feedbacks during the early Eocene

Evidence suggests that the early Eocene was a time of extreme global warmth. However, there are discrepancies between the results of many previous modelling studies and the proxy data at high latitudes, with models struggling to simulate the shallow temperature gradients of this time period to the s...

Full description

Bibliographic Details
Published in:Climate of the Past
Main Authors: Loptson, C. A., Lunt, D. J., Francis, J. E.
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications on behalf of the European Geosciences Union 2014
Subjects:
Online Access:http://nora.nerc.ac.uk/id/eprint/506966/
https://nora.nerc.ac.uk/id/eprint/506966/1/cp-10-419-2014.pdf
https://www.clim-past.net/10/419/2014/
https://doi.org/10.5194/cp-10-419-2014
id ftnerc:oai:nora.nerc.ac.uk:506966
record_format openpolar
spelling ftnerc:oai:nora.nerc.ac.uk:506966 2023-05-15T13:11:30+02:00 Investigating vegetation-climate feedbacks during the early Eocene Loptson, C. A. Lunt, D. J. Francis, J. E. 2014-03-07 text http://nora.nerc.ac.uk/id/eprint/506966/ https://nora.nerc.ac.uk/id/eprint/506966/1/cp-10-419-2014.pdf https://www.clim-past.net/10/419/2014/ https://doi.org/10.5194/cp-10-419-2014 en eng Copernicus Publications on behalf of the European Geosciences Union https://nora.nerc.ac.uk/id/eprint/506966/1/cp-10-419-2014.pdf Loptson, C. A.; Lunt, D. J.; Francis, J. E. 2014 Investigating vegetation-climate feedbacks during the early Eocene. Climate of the Past, 10 (2). 419-436. https://doi.org/10.5194/cp-10-419-2014 <https://doi.org/10.5194/cp-10-419-2014> cc_by CC-BY Botany Publication - Article PeerReviewed 2014 ftnerc https://doi.org/10.5194/cp-10-419-2014 2023-02-04T19:39:30Z Evidence suggests that the early Eocene was a time of extreme global warmth. However, there are discrepancies between the results of many previous modelling studies and the proxy data at high latitudes, with models struggling to simulate the shallow temperature gradients of this time period to the same extent as the proxies indicate. Vegetation–climate feedbacks play an important role in the present day, but are often neglected in these palaeoclimate modelling studies, and this may be a contributing factor to resolving the model–data discrepancy. Here we investigate these vegetation–climate feedbacks by carrying out simulations of the early Eocene climate at 2 × and 4 × pre-industrial atmospheric CO2 with fixed vegetation (homogeneous shrubs everywhere) and dynamic vegetation. The results show that the simulations with dynamic vegetation are warmer in the global annual mean than the simulations with fixed shrubs by 0.9 °C at 2 × and 1.8 °C at 4 ×. Consequently, the warming when CO2 is doubled from 2 × to 4 × is 1 °C higher (in the global annual mean) with dynamic vegetation than with fixed shrubs. This corresponds to an increase in climate sensitivity of 26%. This difference in warming is enhanced at high latitudes, with temperatures increasing by over 50% in some regions of Antarctica. In the Arctic, ice–albedo feedbacks are responsible for the majority of this warming. On a global scale, energy balance analysis shows that the enhanced warming with dynamic vegetation is mainly associated with an increase in atmospheric water vapour but changes in clouds also contribute to the temperature increase. It is likely that changes in surface albedo due to changes in vegetation cover resulted in an initial warming which triggered these water vapour feedbacks. In conclusion, dynamic vegetation goes some way to resolving the discrepancy, but our modelled temperatures cannot reach the same warmth as the data suggest in the Arctic. This suggests that there are additional mechanisms, not included in this modelling framework, ... Article in Journal/Newspaper albedo Antarc* Antarctica Arctic Natural Environment Research Council: NERC Open Research Archive Arctic Climate of the Past 10 2 419 436
institution Open Polar
collection Natural Environment Research Council: NERC Open Research Archive
op_collection_id ftnerc
language English
topic Botany
spellingShingle Botany
Loptson, C. A.
Lunt, D. J.
Francis, J. E.
Investigating vegetation-climate feedbacks during the early Eocene
topic_facet Botany
description Evidence suggests that the early Eocene was a time of extreme global warmth. However, there are discrepancies between the results of many previous modelling studies and the proxy data at high latitudes, with models struggling to simulate the shallow temperature gradients of this time period to the same extent as the proxies indicate. Vegetation–climate feedbacks play an important role in the present day, but are often neglected in these palaeoclimate modelling studies, and this may be a contributing factor to resolving the model–data discrepancy. Here we investigate these vegetation–climate feedbacks by carrying out simulations of the early Eocene climate at 2 × and 4 × pre-industrial atmospheric CO2 with fixed vegetation (homogeneous shrubs everywhere) and dynamic vegetation. The results show that the simulations with dynamic vegetation are warmer in the global annual mean than the simulations with fixed shrubs by 0.9 °C at 2 × and 1.8 °C at 4 ×. Consequently, the warming when CO2 is doubled from 2 × to 4 × is 1 °C higher (in the global annual mean) with dynamic vegetation than with fixed shrubs. This corresponds to an increase in climate sensitivity of 26%. This difference in warming is enhanced at high latitudes, with temperatures increasing by over 50% in some regions of Antarctica. In the Arctic, ice–albedo feedbacks are responsible for the majority of this warming. On a global scale, energy balance analysis shows that the enhanced warming with dynamic vegetation is mainly associated with an increase in atmospheric water vapour but changes in clouds also contribute to the temperature increase. It is likely that changes in surface albedo due to changes in vegetation cover resulted in an initial warming which triggered these water vapour feedbacks. In conclusion, dynamic vegetation goes some way to resolving the discrepancy, but our modelled temperatures cannot reach the same warmth as the data suggest in the Arctic. This suggests that there are additional mechanisms, not included in this modelling framework, ...
format Article in Journal/Newspaper
author Loptson, C. A.
Lunt, D. J.
Francis, J. E.
author_facet Loptson, C. A.
Lunt, D. J.
Francis, J. E.
author_sort Loptson, C. A.
title Investigating vegetation-climate feedbacks during the early Eocene
title_short Investigating vegetation-climate feedbacks during the early Eocene
title_full Investigating vegetation-climate feedbacks during the early Eocene
title_fullStr Investigating vegetation-climate feedbacks during the early Eocene
title_full_unstemmed Investigating vegetation-climate feedbacks during the early Eocene
title_sort investigating vegetation-climate feedbacks during the early eocene
publisher Copernicus Publications on behalf of the European Geosciences Union
publishDate 2014
url http://nora.nerc.ac.uk/id/eprint/506966/
https://nora.nerc.ac.uk/id/eprint/506966/1/cp-10-419-2014.pdf
https://www.clim-past.net/10/419/2014/
https://doi.org/10.5194/cp-10-419-2014
geographic Arctic
geographic_facet Arctic
genre albedo
Antarc*
Antarctica
Arctic
genre_facet albedo
Antarc*
Antarctica
Arctic
op_relation https://nora.nerc.ac.uk/id/eprint/506966/1/cp-10-419-2014.pdf
Loptson, C. A.; Lunt, D. J.; Francis, J. E. 2014 Investigating vegetation-climate feedbacks during the early Eocene. Climate of the Past, 10 (2). 419-436. https://doi.org/10.5194/cp-10-419-2014 <https://doi.org/10.5194/cp-10-419-2014>
op_rights cc_by
op_rightsnorm CC-BY
op_doi https://doi.org/10.5194/cp-10-419-2014
container_title Climate of the Past
container_volume 10
container_issue 2
container_start_page 419
op_container_end_page 436
_version_ 1766247722587783168