A survey of natural electromagnetic noise in the frequency range f = 1–10 kHz at Halley station, Antarctica: 1. Radio atmospherics from lightning

This paper presents results from the first systematic survey of VLF wave activity at Halley, Antarctica (76 °S, 27 °W, L = 4.3). Beginning in 1971, the peak, average and minimum (P, A, M) signal levels observed in four frequency bands centred on 0.75 kHz, 1.25 kHz, 3.2 kHz and 9.6 kHz have been reco...

Full description

Bibliographic Details
Published in:Journal of Atmospheric and Solar-Terrestrial Physics
Main Authors: Smith, A.J., Jenkins, P.J.
Format: Article in Journal/Newspaper
Language:unknown
Published: Pergamon 1998
Subjects:
Online Access:http://nora.nerc.ac.uk/id/eprint/504341/
https://doi.org/10.1016/S1364-6826(97)00057-6
id ftnerc:oai:nora.nerc.ac.uk:504341
record_format openpolar
spelling ftnerc:oai:nora.nerc.ac.uk:504341 2023-05-15T13:48:08+02:00 A survey of natural electromagnetic noise in the frequency range f = 1–10 kHz at Halley station, Antarctica: 1. Radio atmospherics from lightning Smith, A.J. Jenkins, P.J. 1998 http://nora.nerc.ac.uk/id/eprint/504341/ https://doi.org/10.1016/S1364-6826(97)00057-6 unknown Pergamon Smith, A.J.; Jenkins, P.J. 1998 A survey of natural electromagnetic noise in the frequency range f = 1–10 kHz at Halley station, Antarctica: 1. Radio atmospherics from lightning. Journal of Atmospheric and Solar-Terrestrial Physics, 60 (2). 263-277. https://doi.org/10.1016/S1364-6826(97)00057-6 <https://doi.org/10.1016/S1364-6826(97)00057-6> Publication - Article PeerReviewed 1998 ftnerc https://doi.org/10.1016/S1364-6826(97)00057-6 2023-02-04T19:38:23Z This paper presents results from the first systematic survey of VLF wave activity at Halley, Antarctica (76 °S, 27 °W, L = 4.3). Beginning in 1971, the peak, average and minimum (P, A, M) signal levels observed in four frequency bands centred on 0.75 kHz, 1.25 kHz, 3.2 kHz and 9.6 kHz have been recorded every 5 min. At these frequencies the observed radio noise is largely natural, the waves being generated either in the magnetosphere (e.g. chorus, hiss, etc.) or near the ground, the latter principally from lightning discharges (radio atmospherics, or “spherics”) which reach the receiver after propagating some distance in the Earth-ionosphere waveguide (lightning does not occur in the immediate vicinity of Halley). Here we analyse the observations for 1984, the first complete year for which we have data in digital form, in terms of thunderstorm regions, as a benchmark for more extended studies of possible long-term change in global lightning activity. The data are presented in compressed colour graphic format which facilitates the identification of periodic (diurnal and annual) and aperiodic variations. At 3.2 kHz, attenuation in the Earth-ionosphere waveguide is severe, and only relatively few spherics, from close lighting source regions, are observed. Thus, whilst the 3.2 M channel is insensitive to lightning, and responds mostly to magnetospheric emissions, the 3.2 P channel is dominated by spherics. The 3.2 P data show a marked diurnal and seasonal variation symmetrical about Halley local noon and about the solstices, consistent with nearby sources and attenuation rates for subionospheric propagation which are much greater during the day than at night. At 9.6 kHz, waveguide attenuation is much lower (and there is less difference between day and night), and the minimum channel is dominated by a continuum of spheric noise originating from globally distributed distant source regions, notably those in the tropics. Consequently, there is no control by the local dawn-dusk terminator; the diurnal and seasonal ... Article in Journal/Newspaper Antarc* Antarctica Natural Environment Research Council: NERC Open Research Archive Halley Station ENVELOPE(-26.541,-26.541,-75.581,-75.581) Journal of Atmospheric and Solar-Terrestrial Physics 60 2 263 277
institution Open Polar
collection Natural Environment Research Council: NERC Open Research Archive
op_collection_id ftnerc
language unknown
description This paper presents results from the first systematic survey of VLF wave activity at Halley, Antarctica (76 °S, 27 °W, L = 4.3). Beginning in 1971, the peak, average and minimum (P, A, M) signal levels observed in four frequency bands centred on 0.75 kHz, 1.25 kHz, 3.2 kHz and 9.6 kHz have been recorded every 5 min. At these frequencies the observed radio noise is largely natural, the waves being generated either in the magnetosphere (e.g. chorus, hiss, etc.) or near the ground, the latter principally from lightning discharges (radio atmospherics, or “spherics”) which reach the receiver after propagating some distance in the Earth-ionosphere waveguide (lightning does not occur in the immediate vicinity of Halley). Here we analyse the observations for 1984, the first complete year for which we have data in digital form, in terms of thunderstorm regions, as a benchmark for more extended studies of possible long-term change in global lightning activity. The data are presented in compressed colour graphic format which facilitates the identification of periodic (diurnal and annual) and aperiodic variations. At 3.2 kHz, attenuation in the Earth-ionosphere waveguide is severe, and only relatively few spherics, from close lighting source regions, are observed. Thus, whilst the 3.2 M channel is insensitive to lightning, and responds mostly to magnetospheric emissions, the 3.2 P channel is dominated by spherics. The 3.2 P data show a marked diurnal and seasonal variation symmetrical about Halley local noon and about the solstices, consistent with nearby sources and attenuation rates for subionospheric propagation which are much greater during the day than at night. At 9.6 kHz, waveguide attenuation is much lower (and there is less difference between day and night), and the minimum channel is dominated by a continuum of spheric noise originating from globally distributed distant source regions, notably those in the tropics. Consequently, there is no control by the local dawn-dusk terminator; the diurnal and seasonal ...
format Article in Journal/Newspaper
author Smith, A.J.
Jenkins, P.J.
spellingShingle Smith, A.J.
Jenkins, P.J.
A survey of natural electromagnetic noise in the frequency range f = 1–10 kHz at Halley station, Antarctica: 1. Radio atmospherics from lightning
author_facet Smith, A.J.
Jenkins, P.J.
author_sort Smith, A.J.
title A survey of natural electromagnetic noise in the frequency range f = 1–10 kHz at Halley station, Antarctica: 1. Radio atmospherics from lightning
title_short A survey of natural electromagnetic noise in the frequency range f = 1–10 kHz at Halley station, Antarctica: 1. Radio atmospherics from lightning
title_full A survey of natural electromagnetic noise in the frequency range f = 1–10 kHz at Halley station, Antarctica: 1. Radio atmospherics from lightning
title_fullStr A survey of natural electromagnetic noise in the frequency range f = 1–10 kHz at Halley station, Antarctica: 1. Radio atmospherics from lightning
title_full_unstemmed A survey of natural electromagnetic noise in the frequency range f = 1–10 kHz at Halley station, Antarctica: 1. Radio atmospherics from lightning
title_sort survey of natural electromagnetic noise in the frequency range f = 1–10 khz at halley station, antarctica: 1. radio atmospherics from lightning
publisher Pergamon
publishDate 1998
url http://nora.nerc.ac.uk/id/eprint/504341/
https://doi.org/10.1016/S1364-6826(97)00057-6
long_lat ENVELOPE(-26.541,-26.541,-75.581,-75.581)
geographic Halley Station
geographic_facet Halley Station
genre Antarc*
Antarctica
genre_facet Antarc*
Antarctica
op_relation Smith, A.J.; Jenkins, P.J. 1998 A survey of natural electromagnetic noise in the frequency range f = 1–10 kHz at Halley station, Antarctica: 1. Radio atmospherics from lightning. Journal of Atmospheric and Solar-Terrestrial Physics, 60 (2). 263-277. https://doi.org/10.1016/S1364-6826(97)00057-6 <https://doi.org/10.1016/S1364-6826(97)00057-6>
op_doi https://doi.org/10.1016/S1364-6826(97)00057-6
container_title Journal of Atmospheric and Solar-Terrestrial Physics
container_volume 60
container_issue 2
container_start_page 263
op_container_end_page 277
_version_ 1766248731805483008