Polyphase Neoproterozoic orogenesis within the East Africa-Antarctica Orogenic Belt in central and northern Madagascar
Our recent geological survey of the basement of central and northern Madagascar allowed us to re-evaluate the evolution of this part of the East Africa–Antarctica Orogen (EAAO). Five crustal domains are recognized, characterized by distinctive lithologies and histories of sedimentation, magmatism, d...
Main Authors: | , , , , , , , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Book Part |
Language: | English |
Published: |
Geological Society of London
2011
|
Subjects: | |
Online Access: | http://nora.nerc.ac.uk/id/eprint/15741/ https://nora.nerc.ac.uk/id/eprint/15741/1/Final_Revised_after_review.pdf http://sp.lyellcollection.org/content/357/1 |
Summary: | Our recent geological survey of the basement of central and northern Madagascar allowed us to re-evaluate the evolution of this part of the East Africa–Antarctica Orogen (EAAO). Five crustal domains are recognized, characterized by distinctive lithologies and histories of sedimentation, magmatism, deformation and metamorphism, and separated by tectonic and/or unconformable contacts. Four consist largely of Archaean metamorphic rocks (Antongil, Masora and Antananarivo Cratons, Tsaratanana Complex). The fifth (Bemarivo Belt) comprises Proterozoic meta-igneous rocks. The older rocks were intruded by plutonic suites at c. 1000 Ma, 820– 760 Ma, 630–595 Ma and 560–520 Ma. The evolution of the four Archaean domains and their boundaries remains contentious, with two end-member interpretations evaluated: (1) all five crustal domains are separate tectonic elements, juxtaposed along Neoproterozoic sutures and (2) the four Archaean domains are segments of an older Archaean craton, which was sutured against the Bemarivo Belt in the Neoproterozoic. Rodinia fragmented during the early Neoproterozoic with intracratonic rifts that sometimes developed into oceanic basins. Subsequent Mid- Neoproterozoic collision of smaller cratonic blocks was followed by renewed extension and magmatism. The global ‘Terminal Pan-African’ event (560–490 Ma) finally stitched together the Mid-Neoproterozoic cratons to form Gondwana. |
---|