Mechanisms controlling primary and new production in a global ecosystem model Part I: Validation of the biological simulation

A global general circulation model coupled to a simple six-compartment ecosystem model is used to study the extent to which global variability in primary and export production can be realistically predicted on the basis of advanced parameterizations of upper mixed layer physics, without recourse to...

Full description

Bibliographic Details
Main Authors: Popova, E.E., Coward, A.C., Nurser, G.A., de Cuevas, B., Fasham, M.J.R., Anderson, T.R.
Format: Article in Journal/Newspaper
Language:unknown
Published: 2006
Subjects:
Online Access:http://nora.nerc.ac.uk/id/eprint/143919/
http://www.ocean-sci.net/2/249/2006/os-2-249-2006.pdf
id ftnerc:oai:nora.nerc.ac.uk:143919
record_format openpolar
spelling ftnerc:oai:nora.nerc.ac.uk:143919 2023-05-15T17:29:43+02:00 Mechanisms controlling primary and new production in a global ecosystem model Part I: Validation of the biological simulation Popova, E.E. Coward, A.C. Nurser, G.A. de Cuevas, B. Fasham, M.J.R. Anderson, T.R. 2006 http://nora.nerc.ac.uk/id/eprint/143919/ http://www.ocean-sci.net/2/249/2006/os-2-249-2006.pdf unknown Popova, E.E. orcid:0000-0002-2012-708X Coward, A.C. orcid:0000-0002-9111-7700 Nurser, G.A.; de Cuevas, B.; Fasham, M.J.R.; Anderson, T.R. orcid:0000-0002-7408-1566 . 2006 Mechanisms controlling primary and new production in a global ecosystem model Part I: Validation of the biological simulation. Ocean Science, 2 (2). 249-266. Publication - Article PeerReviewed 2006 ftnerc 2023-02-04T19:34:44Z A global general circulation model coupled to a simple six-compartment ecosystem model is used to study the extent to which global variability in primary and export production can be realistically predicted on the basis of advanced parameterizations of upper mixed layer physics, without recourse to introducing extra complexity in model biology. The “K profile parameterization” (KPP) scheme employed, combined with 6-hourly external forcing, is able to capture short-term periodic and episodic events such as diurnal cycling and storm-induced deepening. The model realistically reproduces various features of global ecosystem dynamics that have been problematic in previous global modelling studies, using a single generic parameter set. The realistic simulation of deep convection in the North Atlantic, and lack of it in the North Pacific and Southern Oceans, leads to good predictions of chlorophyll and primary production in these contrasting areas. Realistic levels of primary production are predicted in the oligotrophic gyres due to high frequency external forcing of the upper mixed layer (accompanying paper Popova et al., 2006) and novel parameterizations of zooplankton excretion. Good agreement is shown between model and observations at various JGOFS time series sites: BATS, KERFIX, Papa and HOT. One exception is the northern North Atlantic where lower grazing rates are needed, perhaps related to the dominance of mesozooplankton there. The model is therefore not globally robust in the sense that additional parameterizations are needed to realistically simulate ecosystem dynamics in the North Atlantic. Nevertheless, the work emphasises the need to pay particular attention to the parameterization of mixed layer physics in global ocean ecosystem modelling as a prerequisite to increasing the complexity of ecosystem models. Article in Journal/Newspaper North Atlantic Natural Environment Research Council: NERC Open Research Archive Pacific
institution Open Polar
collection Natural Environment Research Council: NERC Open Research Archive
op_collection_id ftnerc
language unknown
description A global general circulation model coupled to a simple six-compartment ecosystem model is used to study the extent to which global variability in primary and export production can be realistically predicted on the basis of advanced parameterizations of upper mixed layer physics, without recourse to introducing extra complexity in model biology. The “K profile parameterization” (KPP) scheme employed, combined with 6-hourly external forcing, is able to capture short-term periodic and episodic events such as diurnal cycling and storm-induced deepening. The model realistically reproduces various features of global ecosystem dynamics that have been problematic in previous global modelling studies, using a single generic parameter set. The realistic simulation of deep convection in the North Atlantic, and lack of it in the North Pacific and Southern Oceans, leads to good predictions of chlorophyll and primary production in these contrasting areas. Realistic levels of primary production are predicted in the oligotrophic gyres due to high frequency external forcing of the upper mixed layer (accompanying paper Popova et al., 2006) and novel parameterizations of zooplankton excretion. Good agreement is shown between model and observations at various JGOFS time series sites: BATS, KERFIX, Papa and HOT. One exception is the northern North Atlantic where lower grazing rates are needed, perhaps related to the dominance of mesozooplankton there. The model is therefore not globally robust in the sense that additional parameterizations are needed to realistically simulate ecosystem dynamics in the North Atlantic. Nevertheless, the work emphasises the need to pay particular attention to the parameterization of mixed layer physics in global ocean ecosystem modelling as a prerequisite to increasing the complexity of ecosystem models.
format Article in Journal/Newspaper
author Popova, E.E.
Coward, A.C.
Nurser, G.A.
de Cuevas, B.
Fasham, M.J.R.
Anderson, T.R.
spellingShingle Popova, E.E.
Coward, A.C.
Nurser, G.A.
de Cuevas, B.
Fasham, M.J.R.
Anderson, T.R.
Mechanisms controlling primary and new production in a global ecosystem model Part I: Validation of the biological simulation
author_facet Popova, E.E.
Coward, A.C.
Nurser, G.A.
de Cuevas, B.
Fasham, M.J.R.
Anderson, T.R.
author_sort Popova, E.E.
title Mechanisms controlling primary and new production in a global ecosystem model Part I: Validation of the biological simulation
title_short Mechanisms controlling primary and new production in a global ecosystem model Part I: Validation of the biological simulation
title_full Mechanisms controlling primary and new production in a global ecosystem model Part I: Validation of the biological simulation
title_fullStr Mechanisms controlling primary and new production in a global ecosystem model Part I: Validation of the biological simulation
title_full_unstemmed Mechanisms controlling primary and new production in a global ecosystem model Part I: Validation of the biological simulation
title_sort mechanisms controlling primary and new production in a global ecosystem model part i: validation of the biological simulation
publishDate 2006
url http://nora.nerc.ac.uk/id/eprint/143919/
http://www.ocean-sci.net/2/249/2006/os-2-249-2006.pdf
geographic Pacific
geographic_facet Pacific
genre North Atlantic
genre_facet North Atlantic
op_relation Popova, E.E. orcid:0000-0002-2012-708X
Coward, A.C. orcid:0000-0002-9111-7700
Nurser, G.A.; de Cuevas, B.; Fasham, M.J.R.; Anderson, T.R. orcid:0000-0002-7408-1566 . 2006 Mechanisms controlling primary and new production in a global ecosystem model Part I: Validation of the biological simulation. Ocean Science, 2 (2). 249-266.
_version_ 1766124508649881600