Waterborne Polyurethanes as a New and Promising Class of Kinetic Inhibitors for Methane Hydrate Formation
© 2019, The Author(s). A facile, new and promising technique based on waterborne polymers for designing and synthesizing kinetic hydrate inhibitors (KHIs) has been proposed to prevent methane hydrate formation. This topic is challenging subject in flow assurance problems in gas and oilfields. Propos...
Main Authors: | , , , |
---|---|
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
2019
|
Subjects: | |
Online Access: | https://openrepository.ru/article?id=198236 |
Summary: | © 2019, The Author(s). A facile, new and promising technique based on waterborne polymers for designing and synthesizing kinetic hydrate inhibitors (KHIs) has been proposed to prevent methane hydrate formation. This topic is challenging subject in flow assurance problems in gas and oilfields. Proposed technique helps to get KHIs with required number and distance of hydrophilic and hydrophobic groups in molecule and good solubility in water. The performance of these new KHIs was investigated by high pressure micro-differential scanning calorimeter (HP-μDSC) and high-pressure autoclave cell. The results demonstrated the high performance of these inhibitors in delay the induction time (10–20 times) and reduce the hydrate growth rate (3 times). Also they did not increase hydrate dissociation temperature in comparison with pure water and show thermodynamic inhibition as well. Inhibition effect of synthesized polymers is improved with the increase of concentration significantly. Since this is the first report of the use of waterborne polymers as kinetic hydrate inhibitor, we expect that KHIs based on waterborne-based polymers can be a prospective option for preventing methane hydrate formation. |
---|