Announcing the SHEBA bulk turbulent flux algorithm [poster]

Mesoscale models and global climate models that are used over sea ice must couple the lower atmosphere to the sea ice through flux boundary conditions. Modelers often refer to the code that makes this connection as a flux coupler. In our jargon, we make the connection with a bulk flux algorithm. In...

Full description

Bibliographic Details
Other Authors: 10th AMS Conference on Polar Meteorology and Oceanography, Andreas, Edgar (author), Persson, P. (author), Grachev, A. (author), Jordan, R. (author), Guest, P. (author), Fairall, C. (author), Horst, Thomas (author), Bao, J. (author), American Meteorological Society (sponsor)
Format: Conference Object
Language:English
Published: 2009
Subjects:
Online Access:http://nldr.library.ucar.edu/repository/collections/OSGC-000-000-002-865
id ftncar:oai:drupal-site.org:conference_75
record_format openpolar
spelling ftncar:oai:drupal-site.org:conference_75 2023-07-30T04:01:41+02:00 Announcing the SHEBA bulk turbulent flux algorithm [poster] 10th AMS Conference on Polar Meteorology and Oceanography Andreas, Edgar (author) Persson, P. (author) Grachev, A. (author) Jordan, R. (author) Guest, P. (author) Fairall, C. (author) Horst, Thomas (author) Bao, J. (author) American Meteorological Society (sponsor) 2009-05-17-2009-05-21 application/pdf http://nldr.library.ucar.edu/repository/collections/OSGC-000-000-002-865 en eng http://ams.confex.com/ams/10POLAR/techprogram/paper_152590.htm http://nldr.library.ucar.edu/repository/collections/OSGC-000-000-002-865 ark:/85065/d7gb2338 Copyright Author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Text conference material 2009 ftncar 2023-07-17T18:24:57Z Mesoscale models and global climate models that are used over sea ice must couple the lower atmosphere to the sea ice through flux boundary conditions. Modelers often refer to the code that makes this connection as a flux coupler. In our jargon, we make the connection with a bulk flux algorithm. In most sea ice and atmospheric models, this flux coupler is a potpourri of equations, parameterizations, and algorithms selected from many sources. In contrast to this standard piecemeal approach, we describe here the first bulk turbulent flux algorithm for coupling the atmosphere with sea ice regions that has been developed from a large data set and comprehensively tested as a unified package against flux data. We base our algorithm on data from SHEBA, the experiment to study the Surface Heat Budget of the Arctic Ocean. SHEBA yielded roughly 18,000 hours of turbulent flux data from multiple sites over Arctic sea ice. The SHEBA year presented two aerodynamic seasons: winter and summer. We therefore developed two complementary versions of the flux algorithm. One version treats winter, when the sea ice is compact and snow-covered and the snow is dry enough to blow and drift. The second version treats summer, when the snow is wet and sticky and thus does not drift; later in summer, the snow melts entirely to expose bare ice, and extensive open water covers the surface in the form of melt ponds and leads. We also recognized that summer sea ice behaves aerodynamically like the marginal ice zone; our summer algorithm thus also works in marginal ice zones in any season. Components of our algorithm include new expressions for the roughness length for wind speed (z0) over winter and summer sea ice, validated expressions for the roughness lengths for temperature (zT) and humidity (zQ), new expressions for the profile stratification corrections in stable stratification, and tested expressions for the effective wind speed in very light winds in both stable and unstable stratification. To demonstrate our algorithm, we will compare ... Conference Object Arctic Arctic Ocean Sea ice Surface Heat Budget of the Arctic Ocean OpenSky (NCAR/UCAR - National Center for Atmospheric Research/University Corporation for Atmospheric Research) Arctic Arctic Ocean
institution Open Polar
collection OpenSky (NCAR/UCAR - National Center for Atmospheric Research/University Corporation for Atmospheric Research)
op_collection_id ftncar
language English
description Mesoscale models and global climate models that are used over sea ice must couple the lower atmosphere to the sea ice through flux boundary conditions. Modelers often refer to the code that makes this connection as a flux coupler. In our jargon, we make the connection with a bulk flux algorithm. In most sea ice and atmospheric models, this flux coupler is a potpourri of equations, parameterizations, and algorithms selected from many sources. In contrast to this standard piecemeal approach, we describe here the first bulk turbulent flux algorithm for coupling the atmosphere with sea ice regions that has been developed from a large data set and comprehensively tested as a unified package against flux data. We base our algorithm on data from SHEBA, the experiment to study the Surface Heat Budget of the Arctic Ocean. SHEBA yielded roughly 18,000 hours of turbulent flux data from multiple sites over Arctic sea ice. The SHEBA year presented two aerodynamic seasons: winter and summer. We therefore developed two complementary versions of the flux algorithm. One version treats winter, when the sea ice is compact and snow-covered and the snow is dry enough to blow and drift. The second version treats summer, when the snow is wet and sticky and thus does not drift; later in summer, the snow melts entirely to expose bare ice, and extensive open water covers the surface in the form of melt ponds and leads. We also recognized that summer sea ice behaves aerodynamically like the marginal ice zone; our summer algorithm thus also works in marginal ice zones in any season. Components of our algorithm include new expressions for the roughness length for wind speed (z0) over winter and summer sea ice, validated expressions for the roughness lengths for temperature (zT) and humidity (zQ), new expressions for the profile stratification corrections in stable stratification, and tested expressions for the effective wind speed in very light winds in both stable and unstable stratification. To demonstrate our algorithm, we will compare ...
author2 10th AMS Conference on Polar Meteorology and Oceanography
Andreas, Edgar (author)
Persson, P. (author)
Grachev, A. (author)
Jordan, R. (author)
Guest, P. (author)
Fairall, C. (author)
Horst, Thomas (author)
Bao, J. (author)
American Meteorological Society (sponsor)
format Conference Object
title Announcing the SHEBA bulk turbulent flux algorithm [poster]
spellingShingle Announcing the SHEBA bulk turbulent flux algorithm [poster]
title_short Announcing the SHEBA bulk turbulent flux algorithm [poster]
title_full Announcing the SHEBA bulk turbulent flux algorithm [poster]
title_fullStr Announcing the SHEBA bulk turbulent flux algorithm [poster]
title_full_unstemmed Announcing the SHEBA bulk turbulent flux algorithm [poster]
title_sort announcing the sheba bulk turbulent flux algorithm [poster]
publishDate 2009
url http://nldr.library.ucar.edu/repository/collections/OSGC-000-000-002-865
geographic Arctic
Arctic Ocean
geographic_facet Arctic
Arctic Ocean
genre Arctic
Arctic Ocean
Sea ice
Surface Heat Budget of the Arctic Ocean
genre_facet Arctic
Arctic Ocean
Sea ice
Surface Heat Budget of the Arctic Ocean
op_relation http://ams.confex.com/ams/10POLAR/techprogram/paper_152590.htm
http://nldr.library.ucar.edu/repository/collections/OSGC-000-000-002-865
ark:/85065/d7gb2338
op_rights Copyright Author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
_version_ 1772812445160570880