Meridional heat transport in the DeepMIP Eocene ensemble: Non-CO2and CO2 effects

The total meridional heat transport (MHT) is relatively stable across different climates. Nevertheless, the strength of individual processes contributing to the total transport are not stable. Here we investigate the MHT and its main components especially in the atmosphere, in five coupled climate m...

Full description

Bibliographic Details
Published in:Paleoceanography and Paleoclimatology
Other Authors: Kelemen, Fanni Dora (author), Steinig, Sebastian (author), de Boer, Agatha (author), Zhu, Jiang (author), Chan, Wing‐Le (author), Niezgodzki, Igor (author), Hutchinson, David K. (author), Knorr, Gregor (author), Abe‐Ouchi, Ayako (author), Ahrens, Bodo (author)
Format: Article in Journal/Newspaper
Language:English
Published: 2023
Subjects:
Online Access:https://doi.org/10.1029/2022PA004607
id ftncar:oai:drupal-site.org:articles_26627
record_format openpolar
spelling ftncar:oai:drupal-site.org:articles_26627 2024-04-14T08:19:48+00:00 Meridional heat transport in the DeepMIP Eocene ensemble: Non-CO2and CO2 effects Kelemen, Fanni Dora (author) Steinig, Sebastian (author) de Boer, Agatha (author) Zhu, Jiang (author) Chan, Wing‐Le (author) Niezgodzki, Igor (author) Hutchinson, David K. (author) Knorr, Gregor (author) Abe‐Ouchi, Ayako (author) Ahrens, Bodo (author) 2023-08 https://doi.org/10.1029/2022PA004607 en eng Paleoceanography and Paleoclimatology--Paleoceanog and Paleoclimatol--2572-4517--2572-4525 Meridional Heat Transport in the DeepMIP Eocene ensemble, scripts for figures in Kelemen et al. (2023)--10.5281/zenodo.7958397 articles:26627 doi:10.1029/2022PA004607 ark:/85065/d7rj4ph0 Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. article Text 2023 ftncar https://doi.org/10.1029/2022PA004607 2024-03-21T18:00:26Z The total meridional heat transport (MHT) is relatively stable across different climates. Nevertheless, the strength of individual processes contributing to the total transport are not stable. Here we investigate the MHT and its main components especially in the atmosphere, in five coupled climate model simulations from the Deep-Time Model Intercomparison Project (DeepMIP). These simulations target the early Eocene climatic optimum, a geological time period with high CO2 concentrations, analog to the upper range of end-of-century CO2 projections. Preindustrial and early Eocene simulations, at a range of CO2 levels are used to quantify the MHT changes in response to both CO2 and non-CO2 related forcings. We found that atmospheric poleward heat transport increases with CO2 , while oceanic poleward heat transport decreases. The non-CO2 boundary conditions cause more MHT toward the South Pole, mainly through an increase in the southward oceanic heat transport. The changes in paleogeography increase the heat transport via transient eddies at the northern mid-latitudes in the Eocene. The Eocene Hadley cells do not transport more heat poleward, but due to the warmer atmosphere, especially the northern cell, circulate more heat in the tropics, than today. The monsoon systems' poleward latent heat transport increases with rising CO2 concentrations, but this change is counterweighted by the globally smaller Eocene monsoon area. Our results show that the changes in the monsoon systems' latent heat transport is a robust feature of CO2 warming, which is in line with the currently observed precipitation increase of present day monsoon systems. 1852977 Article in Journal/Newspaper South pole OpenSky (NCAR/UCAR - National Center for Atmospheric Research/University Corporation for Atmospheric Research) South Pole Paleoceanography and Paleoclimatology 38 8
institution Open Polar
collection OpenSky (NCAR/UCAR - National Center for Atmospheric Research/University Corporation for Atmospheric Research)
op_collection_id ftncar
language English
description The total meridional heat transport (MHT) is relatively stable across different climates. Nevertheless, the strength of individual processes contributing to the total transport are not stable. Here we investigate the MHT and its main components especially in the atmosphere, in five coupled climate model simulations from the Deep-Time Model Intercomparison Project (DeepMIP). These simulations target the early Eocene climatic optimum, a geological time period with high CO2 concentrations, analog to the upper range of end-of-century CO2 projections. Preindustrial and early Eocene simulations, at a range of CO2 levels are used to quantify the MHT changes in response to both CO2 and non-CO2 related forcings. We found that atmospheric poleward heat transport increases with CO2 , while oceanic poleward heat transport decreases. The non-CO2 boundary conditions cause more MHT toward the South Pole, mainly through an increase in the southward oceanic heat transport. The changes in paleogeography increase the heat transport via transient eddies at the northern mid-latitudes in the Eocene. The Eocene Hadley cells do not transport more heat poleward, but due to the warmer atmosphere, especially the northern cell, circulate more heat in the tropics, than today. The monsoon systems' poleward latent heat transport increases with rising CO2 concentrations, but this change is counterweighted by the globally smaller Eocene monsoon area. Our results show that the changes in the monsoon systems' latent heat transport is a robust feature of CO2 warming, which is in line with the currently observed precipitation increase of present day monsoon systems. 1852977
author2 Kelemen, Fanni Dora (author)
Steinig, Sebastian (author)
de Boer, Agatha (author)
Zhu, Jiang (author)
Chan, Wing‐Le (author)
Niezgodzki, Igor (author)
Hutchinson, David K. (author)
Knorr, Gregor (author)
Abe‐Ouchi, Ayako (author)
Ahrens, Bodo (author)
format Article in Journal/Newspaper
title Meridional heat transport in the DeepMIP Eocene ensemble: Non-CO2and CO2 effects
spellingShingle Meridional heat transport in the DeepMIP Eocene ensemble: Non-CO2and CO2 effects
title_short Meridional heat transport in the DeepMIP Eocene ensemble: Non-CO2and CO2 effects
title_full Meridional heat transport in the DeepMIP Eocene ensemble: Non-CO2and CO2 effects
title_fullStr Meridional heat transport in the DeepMIP Eocene ensemble: Non-CO2and CO2 effects
title_full_unstemmed Meridional heat transport in the DeepMIP Eocene ensemble: Non-CO2and CO2 effects
title_sort meridional heat transport in the deepmip eocene ensemble: non-co2and co2 effects
publishDate 2023
url https://doi.org/10.1029/2022PA004607
geographic South Pole
geographic_facet South Pole
genre South pole
genre_facet South pole
op_relation Paleoceanography and Paleoclimatology--Paleoceanog and Paleoclimatol--2572-4517--2572-4525
Meridional Heat Transport in the DeepMIP Eocene ensemble, scripts for figures in Kelemen et al. (2023)--10.5281/zenodo.7958397
articles:26627
doi:10.1029/2022PA004607
ark:/85065/d7rj4ph0
op_rights Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
op_doi https://doi.org/10.1029/2022PA004607
container_title Paleoceanography and Paleoclimatology
container_volume 38
container_issue 8
_version_ 1796297906495422464