Impacts of coal dust from an active mine on the spectral reflectance of Arctic surface snow in Svalbard, Norway

Light-absorbing particles (LAPs) in snow such as dust and black carbon influence the radiative forcing at the Earth's surface, which has major implications for global climate models. LAPs also significantly influence the melting of glaciers, sea ice, and seasonal snow. Here we present an in sit...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Atmospheres
Other Authors: Khan, Alia L. (author), Dierssen, Heidi (author), Schwarz, Joshua P. (author), Schmitt, Carl G. (author), Chlus, Adam (author), Hermanson, Mark (author), Painter, Thomas H. (author), McKnight, Diane M. (author)
Format: Article in Journal/Newspaper
Language:English
Published: 2017
Subjects:
Online Access:https://doi.org/10.1002/2016JD025757
id ftncar:oai:drupal-site.org:articles_19611
record_format openpolar
spelling ftncar:oai:drupal-site.org:articles_19611 2023-09-05T13:11:28+02:00 Impacts of coal dust from an active mine on the spectral reflectance of Arctic surface snow in Svalbard, Norway Khan, Alia L. (author) Dierssen, Heidi (author) Schwarz, Joshua P. (author) Schmitt, Carl G. (author) Chlus, Adam (author) Hermanson, Mark (author) Painter, Thomas H. (author) McKnight, Diane M. (author) 2017-02-16 https://doi.org/10.1002/2016JD025757 en eng Journal of Geophysical Research: Atmospheres--J. Geophys. Res. Atmos.--2169897X articles:19611 ark:/85065/d78917pz doi:10.1002/2016JD025757 Copyright 2017 American Geophysical Union. article Text 2017 ftncar https://doi.org/10.1002/2016JD025757 2023-08-14T18:45:52Z Light-absorbing particles (LAPs) in snow such as dust and black carbon influence the radiative forcing at the Earth's surface, which has major implications for global climate models. LAPs also significantly influence the melting of glaciers, sea ice, and seasonal snow. Here we present an in situ study of surface snow near an active coal mine in the Norwegian Arctic. We couple measurements of spectral hemispherical directional reflectance factor (HDRF) with measurements of LAPs characterized in two ways, as refractory black carbon using a Single Particle Soot Photometer and the total light absorption of LAPs measured with the Light Absorption Heating Method. The Snow Ice and Aerosol Radiation model was constrained by LAP measurements. Results were compared to observed spectral albedo measurements. Modeled and observed albedos were similar at the cleaner and more remote sites. However, the modeled spectral albedos do not fully account for the low spectral albedo measured next to the mine. LAP measurements also showed a large variation in particle sizes (tenths to tens of microns) related to transport distance of the particles from the mine. Here we find that LAPs from coal dust reduce the spectral HDRF by up to 84% next to the mine and 55% 0.5 km downwind of the mine. The coupling of extreme LAP observations (1 ng g(-1) to 4863 ng g(-1)) with HDRF measurements from 350 to 2500nm has facilitated the development of spectral band pairs, which could be used in the future to remotely assess LAPs in Arctic snow. Article in Journal/Newspaper albedo Arctic black carbon Sea ice Svalbard OpenSky (NCAR/UCAR - National Center for Atmospheric Research/University Corporation for Atmospheric Research) Arctic Svalbard Norway Journal of Geophysical Research: Atmospheres 122 3 1767 1778
institution Open Polar
collection OpenSky (NCAR/UCAR - National Center for Atmospheric Research/University Corporation for Atmospheric Research)
op_collection_id ftncar
language English
description Light-absorbing particles (LAPs) in snow such as dust and black carbon influence the radiative forcing at the Earth's surface, which has major implications for global climate models. LAPs also significantly influence the melting of glaciers, sea ice, and seasonal snow. Here we present an in situ study of surface snow near an active coal mine in the Norwegian Arctic. We couple measurements of spectral hemispherical directional reflectance factor (HDRF) with measurements of LAPs characterized in two ways, as refractory black carbon using a Single Particle Soot Photometer and the total light absorption of LAPs measured with the Light Absorption Heating Method. The Snow Ice and Aerosol Radiation model was constrained by LAP measurements. Results were compared to observed spectral albedo measurements. Modeled and observed albedos were similar at the cleaner and more remote sites. However, the modeled spectral albedos do not fully account for the low spectral albedo measured next to the mine. LAP measurements also showed a large variation in particle sizes (tenths to tens of microns) related to transport distance of the particles from the mine. Here we find that LAPs from coal dust reduce the spectral HDRF by up to 84% next to the mine and 55% 0.5 km downwind of the mine. The coupling of extreme LAP observations (1 ng g(-1) to 4863 ng g(-1)) with HDRF measurements from 350 to 2500nm has facilitated the development of spectral band pairs, which could be used in the future to remotely assess LAPs in Arctic snow.
author2 Khan, Alia L. (author)
Dierssen, Heidi (author)
Schwarz, Joshua P. (author)
Schmitt, Carl G. (author)
Chlus, Adam (author)
Hermanson, Mark (author)
Painter, Thomas H. (author)
McKnight, Diane M. (author)
format Article in Journal/Newspaper
title Impacts of coal dust from an active mine on the spectral reflectance of Arctic surface snow in Svalbard, Norway
spellingShingle Impacts of coal dust from an active mine on the spectral reflectance of Arctic surface snow in Svalbard, Norway
title_short Impacts of coal dust from an active mine on the spectral reflectance of Arctic surface snow in Svalbard, Norway
title_full Impacts of coal dust from an active mine on the spectral reflectance of Arctic surface snow in Svalbard, Norway
title_fullStr Impacts of coal dust from an active mine on the spectral reflectance of Arctic surface snow in Svalbard, Norway
title_full_unstemmed Impacts of coal dust from an active mine on the spectral reflectance of Arctic surface snow in Svalbard, Norway
title_sort impacts of coal dust from an active mine on the spectral reflectance of arctic surface snow in svalbard, norway
publishDate 2017
url https://doi.org/10.1002/2016JD025757
geographic Arctic
Svalbard
Norway
geographic_facet Arctic
Svalbard
Norway
genre albedo
Arctic
black carbon
Sea ice
Svalbard
genre_facet albedo
Arctic
black carbon
Sea ice
Svalbard
op_relation Journal of Geophysical Research: Atmospheres--J. Geophys. Res. Atmos.--2169897X
articles:19611
ark:/85065/d78917pz
doi:10.1002/2016JD025757
op_rights Copyright 2017 American Geophysical Union.
op_doi https://doi.org/10.1002/2016JD025757
container_title Journal of Geophysical Research: Atmospheres
container_volume 122
container_issue 3
container_start_page 1767
op_container_end_page 1778
_version_ 1776204847427616768