Anticipated Electrical Environment Within Permanently Shadowed Lunar Craters

Shadowed locations ncar the lunar poles arc almost certainly electrically complex regions. At these locations near the terminator, the local solar wind flows nearly tangential to the surface and interacts with large-scale topographic features such as mountains and deep large craters, In this work, w...

Full description

Bibliographic Details
Main Authors: Collier, M. R., Vondrak, R. R., Stubbs, T. J., Killen, R. M., Halekas, J. S., Farrell, W. M., Delory, G. T.
Format: Other/Unknown Material
Language:unknown
Published: 2010
Subjects:
Online Access:http://hdl.handle.net/2060/20110013543
id ftnasantrs:oai:casi.ntrs.nasa.gov:20110013543
record_format openpolar
spelling ftnasantrs:oai:casi.ntrs.nasa.gov:20110013543 2023-05-15T18:23:05+02:00 Anticipated Electrical Environment Within Permanently Shadowed Lunar Craters Collier, M. R. Vondrak, R. R. Stubbs, T. J. Killen, R. M. Halekas, J. S. Farrell, W. M. Delory, G. T. Unclassified, Unlimited, Publicly available March 24, 2010 application/pdf http://hdl.handle.net/2060/20110013543 unknown Document ID: 20110013543 http://hdl.handle.net/2060/20110013543 Copyright, Distribution as joint owner in the copyright CASI Geophysics GSFC.JA.4604.2011 Journal of Geophysical Research; 115 2010 ftnasantrs 2019-07-21T01:01:37Z Shadowed locations ncar the lunar poles arc almost certainly electrically complex regions. At these locations near the terminator, the local solar wind flows nearly tangential to the surface and interacts with large-scale topographic features such as mountains and deep large craters, In this work, we study the solar wind orographic effects from topographic obstructions along a rough lunar surface, On the leeward side of large obstructions, plasma voids are formed in the solar wind because of the absorption of plasma on the upstream surface of these obstacles, Solar wind plasma expands into such voids) producing an ambipolar potential that diverts ion flow into the void region. A surface potential is established on these leeward surfaces in order to balance the currents from the expansion-limited electron and ion populations, Wc find that there arc regions ncar the leeward wall of the craters and leeward mountain faces where solar wind ions cannot access the surface, leaving an electron-rich plasma previously identified as an "electron cloud." In this case, some new current is required to complete the closure for current balance at the surface, and we propose herein that lofted negatively charged dust is one possible (nonunique) compensating current source. Given models for both ambipolar and surface plasma processes, we consider the electrical environment around the large topographic features of the south pole (including Shoemaker crater and the highly varied terrain near Nobile crater), as derived from Goldstone radar data, We also apply our model to moving and stationary objects of differing compositions located on the surface and consider the impact of the deflected ion flow on possible hydrogen resources within the craters Other/Unknown Material South pole NASA Technical Reports Server (NTRS) South Pole Nobile ENVELOPE(-61.433,-61.433,-64.550,-64.550)
institution Open Polar
collection NASA Technical Reports Server (NTRS)
op_collection_id ftnasantrs
language unknown
topic Geophysics
spellingShingle Geophysics
Collier, M. R.
Vondrak, R. R.
Stubbs, T. J.
Killen, R. M.
Halekas, J. S.
Farrell, W. M.
Delory, G. T.
Anticipated Electrical Environment Within Permanently Shadowed Lunar Craters
topic_facet Geophysics
description Shadowed locations ncar the lunar poles arc almost certainly electrically complex regions. At these locations near the terminator, the local solar wind flows nearly tangential to the surface and interacts with large-scale topographic features such as mountains and deep large craters, In this work, we study the solar wind orographic effects from topographic obstructions along a rough lunar surface, On the leeward side of large obstructions, plasma voids are formed in the solar wind because of the absorption of plasma on the upstream surface of these obstacles, Solar wind plasma expands into such voids) producing an ambipolar potential that diverts ion flow into the void region. A surface potential is established on these leeward surfaces in order to balance the currents from the expansion-limited electron and ion populations, Wc find that there arc regions ncar the leeward wall of the craters and leeward mountain faces where solar wind ions cannot access the surface, leaving an electron-rich plasma previously identified as an "electron cloud." In this case, some new current is required to complete the closure for current balance at the surface, and we propose herein that lofted negatively charged dust is one possible (nonunique) compensating current source. Given models for both ambipolar and surface plasma processes, we consider the electrical environment around the large topographic features of the south pole (including Shoemaker crater and the highly varied terrain near Nobile crater), as derived from Goldstone radar data, We also apply our model to moving and stationary objects of differing compositions located on the surface and consider the impact of the deflected ion flow on possible hydrogen resources within the craters
format Other/Unknown Material
author Collier, M. R.
Vondrak, R. R.
Stubbs, T. J.
Killen, R. M.
Halekas, J. S.
Farrell, W. M.
Delory, G. T.
author_facet Collier, M. R.
Vondrak, R. R.
Stubbs, T. J.
Killen, R. M.
Halekas, J. S.
Farrell, W. M.
Delory, G. T.
author_sort Collier, M. R.
title Anticipated Electrical Environment Within Permanently Shadowed Lunar Craters
title_short Anticipated Electrical Environment Within Permanently Shadowed Lunar Craters
title_full Anticipated Electrical Environment Within Permanently Shadowed Lunar Craters
title_fullStr Anticipated Electrical Environment Within Permanently Shadowed Lunar Craters
title_full_unstemmed Anticipated Electrical Environment Within Permanently Shadowed Lunar Craters
title_sort anticipated electrical environment within permanently shadowed lunar craters
publishDate 2010
url http://hdl.handle.net/2060/20110013543
op_coverage Unclassified, Unlimited, Publicly available
long_lat ENVELOPE(-61.433,-61.433,-64.550,-64.550)
geographic South Pole
Nobile
geographic_facet South Pole
Nobile
genre South pole
genre_facet South pole
op_source CASI
op_relation Document ID: 20110013543
http://hdl.handle.net/2060/20110013543
op_rights Copyright, Distribution as joint owner in the copyright
_version_ 1766202511622930432