VHF Wide-Band, Dual-Polarization Microstrip-Patch Antenna

The figure depicts selected aspects of a very-high-frequency (VHF) microstrip patch antenna designed and built to satisfy requirements specific to an airborne synthetic-aperture radar system for measuring the thickness of sea ice. One of the requirements is that the antenna be capable of functioning...

Full description

Bibliographic Details
Main Author: Huang, John
Format: Other/Unknown Material
Language:unknown
Published: 2008
Subjects:
Online Access:http://hdl.handle.net/2060/20080048002
Description
Summary:The figure depicts selected aspects of a very-high-frequency (VHF) microstrip patch antenna designed and built to satisfy requirements specific to an airborne synthetic-aperture radar system for measuring the thickness of sea ice. One of the requirements is that the antenna be capable of functioning over the relatively wide frequency band of 127 to 172 MHz corresponding to a fractional bandwidth of about 30 percent relative to a nominal mid-band frequency of 149.5 MHz. Another requirement is that the antenna be capable of functioning in either or both of two orthogonal linear polarizations. In addition, the antenna is required to be as compact and lightweight as possible. In a basic design according to generally accepted microstrip-patch-antenna engineering practice, one would ordinarily use a relatively thick dielectric substrate and multiple feed probes to obtain the desired combination of wide-band and dual-polarization capabilities. However, the combination of a thick substrate and multiple feeds would give rise to higher-order electromagnetic nodes, thereby undesirably contributing to cross polarization and to reduction of the isolation between feed probes. To counter these adverse effects while satisfying the requirements stated above, the design of this antenna incorporates several improvements over the basic design.