Tropospheric- Stratospheric Measurement Studies Summary

The two high altitude aircraft, ER-2 NASA #706 and 709 and the DC-8 NASA #717 are in active use in several programs of upper atmospheric research to study polar ozone changes, stratospheric-tropospheric exchange processes and atmospheric effects of aviation aircraft. The ER-2 has participated in sev...

Full description

Bibliographic Details
Main Author: Browen, Stuart W.
Language:unknown
Published: 1998
Subjects:
Online Access:http://hdl.handle.net/2060/19990026876
id ftnasantrs:oai:casi.ntrs.nasa.gov:19990026876
record_format openpolar
spelling ftnasantrs:oai:casi.ntrs.nasa.gov:19990026876 2023-05-15T15:09:13+02:00 Tropospheric- Stratospheric Measurement Studies Summary Browen, Stuart W. Unclassified, Unlimited, Publicly available May 05, 1998 application/pdf http://hdl.handle.net/2060/19990026876 unknown Document ID: 19990026876 http://hdl.handle.net/2060/19990026876 No Copyright CASI Geophysics 1998 ftnasantrs 2019-07-21T03:05:42Z The two high altitude aircraft, ER-2 NASA #706 and 709 and the DC-8 NASA #717 are in active use in several programs of upper atmospheric research to study polar ozone changes, stratospheric-tropospheric exchange processes and atmospheric effects of aviation aircraft. The ER-2 has participated in seven major missions which mainly concentrated on vortex dynamics and the large losses of Ozone in the Polar regions (Ozone hole) observed in the spring. One mission verified the complex dynamical chemical and physical processes that occur during sunrise and sunset. Stratospheric Tracers of Atmospheric Transport (STRAT) obtained background measurements using the full ER-2 suite of instruments. Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) in 1997 assisted in understanding the mid-latitude and Arctic Ozone losses during the Northern Summer. The DC-8 with the Meteorological Measurement System (MMS) has participated in the Subsonic Aircraft: Cloud and Contrail Effects Special Study (SUCCESS), in 1996 and the Subsonic assessment Ozone and Nitrogen oxide experiment (SONEX) in 1997 missions. The MMS with its sophisticated software accurately measures ground speed and attitude, in-situ static and dynamic pressure total temperature, which are used to calculate the three dimensional wind fields, static pressure, temperature and turbulence values to meteorological accuracy. The meteorological data is not only of interest for its own sake in atmospheric dynamical processes such as mountain waves and flux measurements; but is also required by other ER-2 experiments that simultaneously measure water vapor, O3, aerosols, NO, HCl, CH4, N2O, ClO, BrO, CO2, NOy, HOx and temperature gradients. MMS products are extensively used to assist in the interpretation of their results in understanding the importance of convective effects relative to in-situ chemical changes, as may be noted by examining the list of references attached. The MMS consists of three subsystems: (a) aircraft instrumentation, inertial navigation system (INS), static and dynamic pressure taps, (b) additional dedicated instrumentation measuring angle of attack, yaw, total temperature, and a GPS which on the DC-8 measures position, velocity and attitude (c) an on board data, storage and computing acquisition system. This instrumentation and the associated software requires both an on-going laboratory ground calibration procedure for the total air temperature, static and total pressure inputs, verification of the INS dynamic response and also extensive air measurements and intercomparisons which ultimately verify and calibrate the complete system and its software. More than the usual accuracy is required because of the near cancellation occurring in the difference between the ground speed and true airspeed vectors used to give the wind vector. In the past year we have redesigned, recalibrated and used the MMS system on the NASA DC-8 that was previously used in the SUCCESS mission for the SONEX mission. Two papers were co-authored based on SUCCESS flights. Several reports and handouts were written for SONEX. Calibrations of the DC-8 pressure transducer temperature measuring thermistors was completed and an extensive analysis spanning several years of data files of the DC-8 Rosemount pressure transducer calibrations was done. Other/Unknown Material Arctic NASA Technical Reports Server (NTRS) Arctic
institution Open Polar
collection NASA Technical Reports Server (NTRS)
op_collection_id ftnasantrs
language unknown
topic Geophysics
spellingShingle Geophysics
Browen, Stuart W.
Tropospheric- Stratospheric Measurement Studies Summary
topic_facet Geophysics
description The two high altitude aircraft, ER-2 NASA #706 and 709 and the DC-8 NASA #717 are in active use in several programs of upper atmospheric research to study polar ozone changes, stratospheric-tropospheric exchange processes and atmospheric effects of aviation aircraft. The ER-2 has participated in seven major missions which mainly concentrated on vortex dynamics and the large losses of Ozone in the Polar regions (Ozone hole) observed in the spring. One mission verified the complex dynamical chemical and physical processes that occur during sunrise and sunset. Stratospheric Tracers of Atmospheric Transport (STRAT) obtained background measurements using the full ER-2 suite of instruments. Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) in 1997 assisted in understanding the mid-latitude and Arctic Ozone losses during the Northern Summer. The DC-8 with the Meteorological Measurement System (MMS) has participated in the Subsonic Aircraft: Cloud and Contrail Effects Special Study (SUCCESS), in 1996 and the Subsonic assessment Ozone and Nitrogen oxide experiment (SONEX) in 1997 missions. The MMS with its sophisticated software accurately measures ground speed and attitude, in-situ static and dynamic pressure total temperature, which are used to calculate the three dimensional wind fields, static pressure, temperature and turbulence values to meteorological accuracy. The meteorological data is not only of interest for its own sake in atmospheric dynamical processes such as mountain waves and flux measurements; but is also required by other ER-2 experiments that simultaneously measure water vapor, O3, aerosols, NO, HCl, CH4, N2O, ClO, BrO, CO2, NOy, HOx and temperature gradients. MMS products are extensively used to assist in the interpretation of their results in understanding the importance of convective effects relative to in-situ chemical changes, as may be noted by examining the list of references attached. The MMS consists of three subsystems: (a) aircraft instrumentation, inertial navigation system (INS), static and dynamic pressure taps, (b) additional dedicated instrumentation measuring angle of attack, yaw, total temperature, and a GPS which on the DC-8 measures position, velocity and attitude (c) an on board data, storage and computing acquisition system. This instrumentation and the associated software requires both an on-going laboratory ground calibration procedure for the total air temperature, static and total pressure inputs, verification of the INS dynamic response and also extensive air measurements and intercomparisons which ultimately verify and calibrate the complete system and its software. More than the usual accuracy is required because of the near cancellation occurring in the difference between the ground speed and true airspeed vectors used to give the wind vector. In the past year we have redesigned, recalibrated and used the MMS system on the NASA DC-8 that was previously used in the SUCCESS mission for the SONEX mission. Two papers were co-authored based on SUCCESS flights. Several reports and handouts were written for SONEX. Calibrations of the DC-8 pressure transducer temperature measuring thermistors was completed and an extensive analysis spanning several years of data files of the DC-8 Rosemount pressure transducer calibrations was done.
author Browen, Stuart W.
author_facet Browen, Stuart W.
author_sort Browen, Stuart W.
title Tropospheric- Stratospheric Measurement Studies Summary
title_short Tropospheric- Stratospheric Measurement Studies Summary
title_full Tropospheric- Stratospheric Measurement Studies Summary
title_fullStr Tropospheric- Stratospheric Measurement Studies Summary
title_full_unstemmed Tropospheric- Stratospheric Measurement Studies Summary
title_sort tropospheric- stratospheric measurement studies summary
publishDate 1998
url http://hdl.handle.net/2060/19990026876
op_coverage Unclassified, Unlimited, Publicly available
geographic Arctic
geographic_facet Arctic
genre Arctic
genre_facet Arctic
op_source CASI
op_relation Document ID: 19990026876
http://hdl.handle.net/2060/19990026876
op_rights No Copyright
_version_ 1766340448613302272