An automated system for mosaicking spaceborne SAR imagery

An automated system has been developed for mosaicking spaceborne synthetic aperture radar (SAR) imagery. The system is capable of producing multiframe mosaics for large-scale mapping by combining images in both the along-track direction and adjacent cross-track swaths from ascending and descending p...

Full description

Bibliographic Details
Main Authors: Kwok, Ronald, Curlander, John C., Pang, Shirley S.
Format: Other/Unknown Material
Language:unknown
Published: 1990
Subjects:
32
Online Access:http://ntrs.nasa.gov/search.jsp?R=19900043448
Description
Summary:An automated system has been developed for mosaicking spaceborne synthetic aperture radar (SAR) imagery. The system is capable of producing multiframe mosaics for large-scale mapping by combining images in both the along-track direction and adjacent cross-track swaths from ascending and descending passes. The system requires no operator interaction and is capable of achieving high registration accuracy. The output product is a geocoded mosaic on a standard map grid such as UTM or polar stereographic. The procedure described in detail in this paper consists essentially of remapping the individual image frames into these standard grids, frame-to-frame image registration and radiometric smoothing of the seams. These procedures are directly applicable to both the Magellan Venus Mapper and a scanning SAR design such as Radarsat, Eos SAR in addition to merging image frames from traditional SAR systems such as SEASAT and SIR-B. With minor modifications, it may also be applied to spaceborne optical sensor data to generate large-scale mosaics efficiently and with a high degree of accuracy. The system has been tested with SEASAT, SIR-B and Landsat TM data. Examples presented in this paper include a 38-frame mosaic of the Yukon River basin in central Alaska, a 33-frame mosaic of southern California and a three-frame terrain-corrected geocoded mosaic of the Wind River basin in Wyoming.