Airborne measurements of tropospheric ozone destruction and particulate bromide formation in the Arctic

Aircraft profiles of O3 concentrations over the Arctic ice pack in spring exhibit a depletion of O3 beneath the surface temperature inversion. One such profile from the NOAA WP-3D Arctic Gas and Aerosol Sampling Program (AGASP) flights in April, 1986 north of Alert, NWT (YLT, 82.5 N) is shown. The g...

Full description

Bibliographic Details
Main Authors: Sheridan, Patrick J., Peterson, Richard E., Oltmans, S. J., Schnell, Russell C.
Format: Other/Unknown Material
Language:unknown
Published: 1988
Subjects:
Online Access:http://hdl.handle.net/2060/19890005211
Description
Summary:Aircraft profiles of O3 concentrations over the Arctic ice pack in spring exhibit a depletion of O3 beneath the surface temperature inversion. One such profile from the NOAA WP-3D Arctic Gas and Aerosol Sampling Program (AGASP) flights in April, 1986 north of Alert, NWT (YLT, 82.5 N) is shown. The gradient of O3 across the temperature inversion, which is essentially a step function from tropospheric values (35 to 40 ppbv) to 0, is somewhat masked by a 1-min running mean applied to the data. Evidence is presented that O3 destruction beneath the Arctic temperature inversion is the result of a photochemical reaction between gaseous Br compounds and O3 to produce particulate Br aerosol. It is noted that in springtime, O3 at the Alert Baseline Station regularly decreases from 30 to 40 ppbv to near 0 over the period of a few hours to a day. At the same time, there is a production of particulate Br with a near 1.0 anti-correlation to O3 concentration. Surface concentrations of bromoform in the Arctic exhibit a rapid decrease following polar sunrise. AGASP aircraft measurements of filterable bromine particulates in the Arctic (March-April, 1983 and 1986) are shown. The greatest concentrations of Br aerosol (shown as enrichment factors relative to to Na in seawater, EFBR (Na)) were observed in samples collected beneath the surface temperature inversion over ice. Samples collected at the same altitude over open ocean (off Spitzbergen) labeled Marine did not exhibit similar Br enrichments. A second region of particulate Br enrichment was observed in the lower stratosphere, which regularly descends to below 500 mb (5.5 km) in the high Arctic. The NOAA WP-3D flew in the stratosphere on all AGASP flights and occasionally measured O3 concentrations in excess of 300 ppbv.