Heterogeneous physicochemistry of the winter polar stratosphere

Present chemical theories of the Antarctic ozone hole assume that heterogeneous reactions involving polar stratospheric clouds (PSCs) are the precursor of springtime ozone depletions. However, none of the theories quantify the rates of proposed heterogeneous processed, and none utilize the extensive...

Full description

Bibliographic Details
Main Authors: Turco, R. P., Toon, O. B.
Format: Other/Unknown Material
Language:unknown
Published: 1988
Subjects:
Online Access:http://hdl.handle.net/2060/19890005164
Description
Summary:Present chemical theories of the Antarctic ozone hole assume that heterogeneous reactions involving polar stratospheric clouds (PSCs) are the precursor of springtime ozone depletions. However, none of the theories quantify the rates of proposed heterogeneous processed, and none utilize the extensive data base on PSC's. Thus, all of the theories must be considered incomplete until the heterogeneous mechanisms are properly defined. A unified treatment developed of the cloud related processes, both physical and chemical, and the importance of these processes using observation data is calibrated. The rates are compared competitive heterogeneous processes to place reasonable limits on critical mechanisms such as the denitrification and dechlorination of the polar winter stratosphere. Among the subjects addressed here are the physical/chemical properties of PSC's including their relevant microphysical, optical and compositional characteristics, mass transfer rates of gaseous constituents to cloud particles, adsorption, accommodation and sticking coefficients on cloud particles, time constants for condensation, absorption and other microphysical processes, effects of solubility and vapor pressure on cloud composition, the statistics of cloud processing of chemically active condensible species, rate limiting steps in heterogeneous chemical reactions, and the nonlinear dependence of ozone loss on physical and chemical parameters.