Infrared polar brightening on Jupiter. III - Spectrometry from the Voyager 1 IRIS experiment

Spectra from the Voyager 1 IRIS experiment confirm the existence of enhanced infrared emission near Jupiter's north magnetic pole in March 1979. The spectral characteristics of the enhanced emission are consistent with a Planck source function. A temperature-pressure profile is derived for the...

Full description

Bibliographic Details
Main Authors: Kim, S. J., Caldwell, J., Rivolo, A. R., Wagener, R., Orton, G. S.
Format: Other/Unknown Material
Language:unknown
Published: 1985
Subjects:
91
Online Access:http://ntrs.nasa.gov/search.jsp?R=19860037917
Description
Summary:Spectra from the Voyager 1 IRIS experiment confirm the existence of enhanced infrared emission near Jupiter's north magnetic pole in March 1979. The spectral characteristics of the enhanced emission are consistent with a Planck source function. A temperature-pressure profile is derived for the region near the north magnetic pole, from which quantitative abundance estimates of minor species are made. Some species previously detected on Jupiter, including CH3D, C2H2, and C2H6, have been observed again near the pole. Newly discovered species, not previously observed on Jupiter, include C2H4, C3H4, and C6H6. All of these species except CH3D appear to have enhanced abundances at the north polar region with respect to midlatitudes. Upper limits are determined for C4H2 and C3H8. The quantitative results are compared with model calculations based on ultraviolet results from the IUE satellite. The plausibility of the C6H6 identification is discussed in terms of the literature on C2H2 polymerization. The relation of C6H6 to cuprene is also discussed.