Arctic Sea ice by passive microwave observations from the Nimbus-5 Satellite

The results of a dynamic/thermodynamic numerical model of Arctic sea ice are compared with satellite images from the Nimbus 5 electrically scanning microwave radiometer. The model combines aspects of two previous sea ice models those of Parkinson and Washington and Ling, Rasmussen, and Campbell. A s...

Full description

Bibliographic Details
Main Authors: Campbell, W. J., Gloersen, P., Zwally, H. J.
Format: Other/Unknown Material
Language:unknown
Published: 1983
Subjects:
48
Online Access:http://ntrs.nasa.gov/search.jsp?R=19840015902
Description
Summary:The results of a dynamic/thermodynamic numerical model of Arctic sea ice are compared with satellite images from the Nimbus 5 electrically scanning microwave radiometer. The model combines aspects of two previous sea ice models those of Parkinson and Washington and Ling, Rasmussen, and Campbell. A solid/fluid model basically follows the formulation of the Parkinson and Washington model with the addition of the constitutive equation and equation of state from the Ling model. The Parkinson and Washington model simulates the seasonal cycle of sea ice thicknesses and concentrations with a horizontal resolution of roughly 200 km and a timestep of 8 hours. The thermodynamics are calculated through energy balances at the interfaces between ice and air, water and ice, and water and air. The ice dynamics are calculated through a momentum equation balancing air stress, water stress, dynamic topography, and Coriolis force, with an adjustment for internal ice resistance.