The spectrum of the Jovian Aurora 1150-1700 A

A series of observations of the northern hemisphere of Jupiter was made in January 1981 using the International Ultraviolet Explorer short-wavelength spectrograph. Exposures of 15 minutes each were made at regular intervals of about 45 minutes around the time when Jupiter's north magnetic pole...

Full description

Bibliographic Details
Main Authors: Durrance, S. T., Feldman, P. D., Moos, H. W.
Format: Other/Unknown Material
Language:unknown
Published: 1982
Subjects:
91
Online Access:http://ntrs.nasa.gov/search.jsp?R=19820051674
Description
Summary:A series of observations of the northern hemisphere of Jupiter was made in January 1981 using the International Ultraviolet Explorer short-wavelength spectrograph. Exposures of 15 minutes each were made at regular intervals of about 45 minutes around the time when Jupiter's north magnetic pole was tilted toward the earth. The auroral emissions of H Lyman-alpha, and the H2 Lyman- and Werner-bands are seen to emanate from a localized region near the north pole. Their intensity increases and decreases in a periodic way as the planet rotates with the maximum occurring at lambda sub III approximately equal to 185 deg. Using the three observations nearest the observed maximum, a composite spectrum of the aurora is obtained with about 8 A resolution and high signal-to-noise ratio, and many of the H2 Lyman- and Werner-bands in this spectral region (1150-1700 A) are identified. This spectrum is compared with a laboratory H2 spectrum and with photoabsorption cross sections for CH4 and C2H6. An upper limit to the slant column density of these hydrocarbons above the auroral emissions is found to be approximately 2 x 10 to the 17th/sq cm.