Estimation of mean sea surfaces in the north Atlantic, the Pacific and the Indian Ocean using GEOS-3 altimeter data

The mean surfaces of several regions of the world's oceans were estimated using GEOS-3 altimeter data. The northwest Atlantic, the northeast Pacific off the coast of California, the Indian Ocean, the southwest Pacific, and the Phillipine Sea are included. These surfaces have been oriented with...

Full description

Bibliographic Details
Main Authors: Chovitz, P. S., Marsh, J. G., Mccarthy, J. J., Martin, T. V.
Format: Other/Unknown Material
Language:unknown
Published: 1979
Subjects:
Online Access:http://hdl.handle.net/2060/19790015445
Description
Summary:The mean surfaces of several regions of the world's oceans were estimated using GEOS-3 altimeter data. The northwest Atlantic, the northeast Pacific off the coast of California, the Indian Ocean, the southwest Pacific, and the Phillipine Sea are included. These surfaces have been oriented with respect to a common earth center-of-mass system by constraining the separate solutions to conform to precisely determined laser reference control orbits. The same reference orbits were used for all regions assuring continuity of the separate solutions. Radial accuracies of the control orbits were in the order of one meter. The altimeter measured sea surface height crossover differences were minimized by the adjustment of tilt and bias parameters for each pass with the exception of laser reference control passes. The tilt and bias adjustments removed long wavelength errors which were primarily due to orbit error. Ocean tides were evaluated. The resolution of the estimated sea surfaces varied from 0.25 degrees off the east coast of the United States to about 2 degrees in part of the Indian Ocean near Australia. The rms crossover discrepancy after adjustment varied from 30 cm to 70 cm depending upon geographic location. Comparisons of the altimeter derived mean sea surface in the North Atlantic with the 5 feet x 5 feet GEM-8 detailed gravimetric geoid indicated a relative consistency of better than a meter.