Effects of elevated temperature and p CO2 on the respiration, biomineralization and photophysiology of the giant clam Tridacna maxima

International audience Many reef organisms, such as the giant clams, are confronted with global change effects. Abnormally high seawater temperatures can lead to mass bleaching events and subsequent mortality, while ocean acidification may impact biomineralization processes. Despite its strong ecolo...

Full description

Bibliographic Details
Published in:Conservation Physiology
Main Authors: Brahmi, Chloé, Chapron, Leila, Le Moullac, Gilles, Soyez, Claude, Beliaeff, Benoît, Lazareth, Claire, E, Gaertner-Mazouni, Nabila, Vidal-Dupiol, Jeremie
Other Authors: Université de la Polynésie Française (UPF), Ecosystèmes Insulaires Océaniens (UMR 241) (EIO), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de la Polynésie Française (UPF)-Institut Louis Malardé Papeete (ILM), Institut de Recherche pour le Développement (IRD), School of Earth Sciences Columbus, Ohio State University Columbus (OSU), Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA), Interactions Hôtes-Pathogènes-Environnements (IHPE), Université de Perpignan Via Domitia (UPVD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2021
Subjects:
Online Access:https://hal.science/hal-03265586
https://hal.science/hal-03265586/document
https://hal.science/hal-03265586/file/Brahmi-2021-ConservPhysiol-Effect.pdf
https://doi.org/10.1093/conphys/coab041
id ftmuseumnhn:oai:HAL:hal-03265586v1
record_format openpolar
institution Open Polar
collection Muséum National d'Histoire Naturelle (MNHM): HAL
op_collection_id ftmuseumnhn
language English
topic Giant clams
ocean acidification
photosynthetic yield
respiration
symbionts
thermal stress
[SDV.EE.BIO]Life Sciences [q-bio]/Ecology
environment/Bioclimatology
[SDV.BA.ZI]Life Sciences [q-bio]/Animal biology/Invertebrate Zoology
spellingShingle Giant clams
ocean acidification
photosynthetic yield
respiration
symbionts
thermal stress
[SDV.EE.BIO]Life Sciences [q-bio]/Ecology
environment/Bioclimatology
[SDV.BA.ZI]Life Sciences [q-bio]/Animal biology/Invertebrate Zoology
Brahmi, Chloé
Chapron, Leila
Le Moullac, Gilles
Soyez, Claude
Beliaeff, Benoît
Lazareth, Claire, E
Gaertner-Mazouni, Nabila
Vidal-Dupiol, Jeremie
Effects of elevated temperature and p CO2 on the respiration, biomineralization and photophysiology of the giant clam Tridacna maxima
topic_facet Giant clams
ocean acidification
photosynthetic yield
respiration
symbionts
thermal stress
[SDV.EE.BIO]Life Sciences [q-bio]/Ecology
environment/Bioclimatology
[SDV.BA.ZI]Life Sciences [q-bio]/Animal biology/Invertebrate Zoology
description International audience Many reef organisms, such as the giant clams, are confronted with global change effects. Abnormally high seawater temperatures can lead to mass bleaching events and subsequent mortality, while ocean acidification may impact biomineralization processes. Despite its strong ecological and socio-economic importance, its responses to these threats still need to be explored. We investigated physiological responses of 4-year-old Tridacna maxima to realistic levels of temperature (+1.5°C) and partial pressure of carbon dioxide (pCO2) (+800 μatm of CO2) predicted for 2100 in French Polynesian lagoons during the warmer season. During a 65-day crossed-factorial experiment, individuals were exposed to two temperatures (29.2°C, 30.7°C) and two pCO2 (430 μatm, 1212 μatm) conditions. The impact of each environmental parameter and their potential synergetic effect were evaluated based on respiration, biomineralization and photophysiology. Kinetics of thermal and/or acidification stress were evaluated by performing measurements at different times of exposure (29, 41, 53, 65 days). At 30.7°C, the holobiont O2 production, symbiont photosynthetic yield and density were negatively impacted. High pCO2 had a significant negative effect on shell growth rate, symbiont photosynthetic yield and density. No significant differences of the shell microstructure were observed between control and experimental conditions in the first 29 days; however, modifications (i.e. less-cohesive lamellae) appeared from 41 days in all temperature and pCO2 conditions. No significant synergetic effect was found. Present thermal conditions (29.2°C) appeared to be sufficiently stressful to induce a host acclimatization response. All these observations indicate that temperature and pCO2 are both forcing variables affecting T. maxima’s physiology and jeopardize its survival under environmental conditions predicted for the end of this century.
author2 Université de la Polynésie Française (UPF)
Ecosystèmes Insulaires Océaniens (UMR 241) (EIO)
Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de la Polynésie Française (UPF)-Institut Louis Malardé Papeete (ILM)
Institut de Recherche pour le Développement (IRD)
School of Earth Sciences Columbus
Ohio State University Columbus (OSU)
Biologie des Organismes et Ecosystèmes Aquatiques (BOREA)
Université de Caen Normandie (UNICAEN)
Normandie Université (NU)-Normandie Université (NU)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA)
Interactions Hôtes-Pathogènes-Environnements (IHPE)
Université de Perpignan Via Domitia (UPVD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
format Article in Journal/Newspaper
author Brahmi, Chloé
Chapron, Leila
Le Moullac, Gilles
Soyez, Claude
Beliaeff, Benoît
Lazareth, Claire, E
Gaertner-Mazouni, Nabila
Vidal-Dupiol, Jeremie
author_facet Brahmi, Chloé
Chapron, Leila
Le Moullac, Gilles
Soyez, Claude
Beliaeff, Benoît
Lazareth, Claire, E
Gaertner-Mazouni, Nabila
Vidal-Dupiol, Jeremie
author_sort Brahmi, Chloé
title Effects of elevated temperature and p CO2 on the respiration, biomineralization and photophysiology of the giant clam Tridacna maxima
title_short Effects of elevated temperature and p CO2 on the respiration, biomineralization and photophysiology of the giant clam Tridacna maxima
title_full Effects of elevated temperature and p CO2 on the respiration, biomineralization and photophysiology of the giant clam Tridacna maxima
title_fullStr Effects of elevated temperature and p CO2 on the respiration, biomineralization and photophysiology of the giant clam Tridacna maxima
title_full_unstemmed Effects of elevated temperature and p CO2 on the respiration, biomineralization and photophysiology of the giant clam Tridacna maxima
title_sort effects of elevated temperature and p co2 on the respiration, biomineralization and photophysiology of the giant clam tridacna maxima
publisher HAL CCSD
publishDate 2021
url https://hal.science/hal-03265586
https://hal.science/hal-03265586/document
https://hal.science/hal-03265586/file/Brahmi-2021-ConservPhysiol-Effect.pdf
https://doi.org/10.1093/conphys/coab041
genre Ocean acidification
genre_facet Ocean acidification
op_source EISSN: 2051-1434
Conservation Physiology
https://hal.science/hal-03265586
Conservation Physiology, 2021, 9 (1), pp.coab041. ⟨10.1093/conphys/coab041⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1093/conphys/coab041
hal-03265586
https://hal.science/hal-03265586
https://hal.science/hal-03265586/document
https://hal.science/hal-03265586/file/Brahmi-2021-ConservPhysiol-Effect.pdf
doi:10.1093/conphys/coab041
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1093/conphys/coab041
container_title Conservation Physiology
container_volume 9
container_issue 1
_version_ 1796316965652922368
spelling ftmuseumnhn:oai:HAL:hal-03265586v1 2024-04-14T08:17:43+00:00 Effects of elevated temperature and p CO2 on the respiration, biomineralization and photophysiology of the giant clam Tridacna maxima Brahmi, Chloé Chapron, Leila Le Moullac, Gilles Soyez, Claude Beliaeff, Benoît Lazareth, Claire, E Gaertner-Mazouni, Nabila Vidal-Dupiol, Jeremie Université de la Polynésie Française (UPF) Ecosystèmes Insulaires Océaniens (UMR 241) (EIO) Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de la Polynésie Française (UPF)-Institut Louis Malardé Papeete (ILM) Institut de Recherche pour le Développement (IRD) School of Earth Sciences Columbus Ohio State University Columbus (OSU) Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) Université de Caen Normandie (UNICAEN) Normandie Université (NU)-Normandie Université (NU)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA) Interactions Hôtes-Pathogènes-Environnements (IHPE) Université de Perpignan Via Domitia (UPVD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM) 2021 https://hal.science/hal-03265586 https://hal.science/hal-03265586/document https://hal.science/hal-03265586/file/Brahmi-2021-ConservPhysiol-Effect.pdf https://doi.org/10.1093/conphys/coab041 en eng HAL CCSD Oxford University Press info:eu-repo/semantics/altIdentifier/doi/10.1093/conphys/coab041 hal-03265586 https://hal.science/hal-03265586 https://hal.science/hal-03265586/document https://hal.science/hal-03265586/file/Brahmi-2021-ConservPhysiol-Effect.pdf doi:10.1093/conphys/coab041 info:eu-repo/semantics/OpenAccess EISSN: 2051-1434 Conservation Physiology https://hal.science/hal-03265586 Conservation Physiology, 2021, 9 (1), pp.coab041. ⟨10.1093/conphys/coab041⟩ Giant clams ocean acidification photosynthetic yield respiration symbionts thermal stress [SDV.EE.BIO]Life Sciences [q-bio]/Ecology environment/Bioclimatology [SDV.BA.ZI]Life Sciences [q-bio]/Animal biology/Invertebrate Zoology info:eu-repo/semantics/article Journal articles 2021 ftmuseumnhn https://doi.org/10.1093/conphys/coab041 2024-03-21T16:33:33Z International audience Many reef organisms, such as the giant clams, are confronted with global change effects. Abnormally high seawater temperatures can lead to mass bleaching events and subsequent mortality, while ocean acidification may impact biomineralization processes. Despite its strong ecological and socio-economic importance, its responses to these threats still need to be explored. We investigated physiological responses of 4-year-old Tridacna maxima to realistic levels of temperature (+1.5°C) and partial pressure of carbon dioxide (pCO2) (+800 μatm of CO2) predicted for 2100 in French Polynesian lagoons during the warmer season. During a 65-day crossed-factorial experiment, individuals were exposed to two temperatures (29.2°C, 30.7°C) and two pCO2 (430 μatm, 1212 μatm) conditions. The impact of each environmental parameter and their potential synergetic effect were evaluated based on respiration, biomineralization and photophysiology. Kinetics of thermal and/or acidification stress were evaluated by performing measurements at different times of exposure (29, 41, 53, 65 days). At 30.7°C, the holobiont O2 production, symbiont photosynthetic yield and density were negatively impacted. High pCO2 had a significant negative effect on shell growth rate, symbiont photosynthetic yield and density. No significant differences of the shell microstructure were observed between control and experimental conditions in the first 29 days; however, modifications (i.e. less-cohesive lamellae) appeared from 41 days in all temperature and pCO2 conditions. No significant synergetic effect was found. Present thermal conditions (29.2°C) appeared to be sufficiently stressful to induce a host acclimatization response. All these observations indicate that temperature and pCO2 are both forcing variables affecting T. maxima’s physiology and jeopardize its survival under environmental conditions predicted for the end of this century. Article in Journal/Newspaper Ocean acidification Muséum National d'Histoire Naturelle (MNHM): HAL Conservation Physiology 9 1