Immobilization engineering – How to design advanced sol-gel systems for biocatalysis?

An immobilization engineering approach using bioinformatics and experimental design tools was applied to improve the sol–gel enzyme entrapment methodology. This strategy was used for the immobilization of lipase B from Candida antarctica (CaLB), a versatile enzyme widely used even on the industrial...

Full description

Bibliographic Details
Published in:Green Chemistry
Main Authors: Balogh Weiser, Diána, Nagy, Flóra, Bánóczi, Gergely, Oláh, Márk, Farkas, Attila, Szilágyi, András Ferenc, Nagyné László, Krisztina, Gellért, Ákos, Marosi, György, Kemény, Sándor, Poppe, László
Format: Article in Journal/Newspaper
Language:English
Published: Royal Society of Chemistry 2017
Subjects:
Online Access:http://real.mtak.hu/101990/
http://real.mtak.hu/101990/2/c7gc00.pdf
https://doi.org/10.1039/c7gc00896a
id ftmtak:oai:real.mtak.hu:101990
record_format openpolar
spelling ftmtak:oai:real.mtak.hu:101990 2023-06-11T04:04:09+02:00 Immobilization engineering – How to design advanced sol-gel systems for biocatalysis? Balogh Weiser, Diána Nagy, Flóra Bánóczi, Gergely Oláh, Márk Farkas, Attila Szilágyi, András Ferenc Nagyné László, Krisztina Gellért, Ákos Marosi, György Kemény, Sándor Poppe, László 2017 text http://real.mtak.hu/101990/ http://real.mtak.hu/101990/2/c7gc00.pdf https://doi.org/10.1039/c7gc00896a en eng Royal Society of Chemistry http://real.mtak.hu/101990/2/c7gc00.pdf Balogh Weiser, Diána and Nagy, Flóra and Bánóczi, Gergely and Oláh, Márk and Farkas, Attila and Szilágyi, András Ferenc and Nagyné László, Krisztina and Gellért, Ákos and Marosi, György and Kemény, Sándor and Poppe, László (2017) Immobilization engineering – How to design advanced sol-gel systems for biocatalysis? Green Chemistry, 19 (16). pp. 3927-3937. ISSN 1463-9262, ESSN: 1463-9270 QD Chemistry / kémia Article PeerReviewed info:eu-repo/semantics/article 2017 ftmtak https://doi.org/10.1039/c7gc00896a 2023-04-19T23:29:10Z An immobilization engineering approach using bioinformatics and experimental design tools was applied to improve the sol–gel enzyme entrapment methodology. This strategy was used for the immobilization of lipase B from Candida antarctica (CaLB), a versatile enzyme widely used even on the industrial scale. The optimized entrapment of CaLB in sol–gel matrices is reported by the response-surface methodology enabling efficient process development. The immobilized CaLBs characterized by functional efficiency and enhanced recovery provided economical and green options for flow chemistry. Various ternary mixtures of sol–gel precursors allowed the creation of tailored entrapment matrices best suited for the enzyme and its targeted substrate. The sol–gel-entrapped forms of CaLB were excellent biocatalysts in the kinetic resolutions of secondary alcohols and secondary amines with aromatic or aliphatic substituents both in batch and continuous-flow biotransformations. Article in Journal/Newspaper Antarc* Antarctica MTAK: REAL (Library and Information Centre of the Hungarian Academy of Sciences Green Chemistry 19 16 3927 3937
institution Open Polar
collection MTAK: REAL (Library and Information Centre of the Hungarian Academy of Sciences
op_collection_id ftmtak
language English
topic QD Chemistry / kémia
spellingShingle QD Chemistry / kémia
Balogh Weiser, Diána
Nagy, Flóra
Bánóczi, Gergely
Oláh, Márk
Farkas, Attila
Szilágyi, András Ferenc
Nagyné László, Krisztina
Gellért, Ákos
Marosi, György
Kemény, Sándor
Poppe, László
Immobilization engineering – How to design advanced sol-gel systems for biocatalysis?
topic_facet QD Chemistry / kémia
description An immobilization engineering approach using bioinformatics and experimental design tools was applied to improve the sol–gel enzyme entrapment methodology. This strategy was used for the immobilization of lipase B from Candida antarctica (CaLB), a versatile enzyme widely used even on the industrial scale. The optimized entrapment of CaLB in sol–gel matrices is reported by the response-surface methodology enabling efficient process development. The immobilized CaLBs characterized by functional efficiency and enhanced recovery provided economical and green options for flow chemistry. Various ternary mixtures of sol–gel precursors allowed the creation of tailored entrapment matrices best suited for the enzyme and its targeted substrate. The sol–gel-entrapped forms of CaLB were excellent biocatalysts in the kinetic resolutions of secondary alcohols and secondary amines with aromatic or aliphatic substituents both in batch and continuous-flow biotransformations.
format Article in Journal/Newspaper
author Balogh Weiser, Diána
Nagy, Flóra
Bánóczi, Gergely
Oláh, Márk
Farkas, Attila
Szilágyi, András Ferenc
Nagyné László, Krisztina
Gellért, Ákos
Marosi, György
Kemény, Sándor
Poppe, László
author_facet Balogh Weiser, Diána
Nagy, Flóra
Bánóczi, Gergely
Oláh, Márk
Farkas, Attila
Szilágyi, András Ferenc
Nagyné László, Krisztina
Gellért, Ákos
Marosi, György
Kemény, Sándor
Poppe, László
author_sort Balogh Weiser, Diána
title Immobilization engineering – How to design advanced sol-gel systems for biocatalysis?
title_short Immobilization engineering – How to design advanced sol-gel systems for biocatalysis?
title_full Immobilization engineering – How to design advanced sol-gel systems for biocatalysis?
title_fullStr Immobilization engineering – How to design advanced sol-gel systems for biocatalysis?
title_full_unstemmed Immobilization engineering – How to design advanced sol-gel systems for biocatalysis?
title_sort immobilization engineering – how to design advanced sol-gel systems for biocatalysis?
publisher Royal Society of Chemistry
publishDate 2017
url http://real.mtak.hu/101990/
http://real.mtak.hu/101990/2/c7gc00.pdf
https://doi.org/10.1039/c7gc00896a
genre Antarc*
Antarctica
genre_facet Antarc*
Antarctica
op_relation http://real.mtak.hu/101990/2/c7gc00.pdf
Balogh Weiser, Diána and Nagy, Flóra and Bánóczi, Gergely and Oláh, Márk and Farkas, Attila and Szilágyi, András Ferenc and Nagyné László, Krisztina and Gellért, Ákos and Marosi, György and Kemény, Sándor and Poppe, László (2017) Immobilization engineering – How to design advanced sol-gel systems for biocatalysis? Green Chemistry, 19 (16). pp. 3927-3937. ISSN 1463-9262, ESSN: 1463-9270
op_doi https://doi.org/10.1039/c7gc00896a
container_title Green Chemistry
container_volume 19
container_issue 16
container_start_page 3927
op_container_end_page 3937
_version_ 1768385760278347776