Unexpected diversity of Endozoicomonas in deep-sea corals

The deep ocean hosts a large diversity of azooxanthellate cold-water corals whose associated microbiomes remain to be described. While the bacterial genus Endozoicomonas has been widely identified as a dominant associate of tropical and temperate corals, it has rarely been detected in deep-sea coral...

Full description

Bibliographic Details
Main Authors: Kellogg, CA, Pratte, ZA
Format: Article in Journal/Newspaper
Language:English
Published: Inter-Research Science Center 2021
Subjects:
Online Access:https://scholarworks.montana.edu/xmlui/handle/1/17217
Description
Summary:The deep ocean hosts a large diversity of azooxanthellate cold-water corals whose associated microbiomes remain to be described. While the bacterial genus Endozoicomonas has been widely identified as a dominant associate of tropical and temperate corals, it has rarely been detected in deep-sea corals. Determining microbial baselines for these cold-water corals is a critical first step to understanding the ecosystem services their microbiomes contribute, while providing a benchmark against which to measure responses to environmental change or anthropogenic effects. Samples of Acanthogorgia aspera, A. spissa, Desmophyllum dianthus, and D. pertusum (Lophelia pertusa) were collected from western Atlantic sites off the US east coast and from the northeastern Gulf of Mexico. Microbiomes were characterized by 16S rRNA gene amplicon surveys. Although D. dianthus and D. pertusum have recently been combined into a single genus due to their genetic similarity, their microbiomes were significantly different. The Acanthogorgia spp. were collected from submarine canyons in different regions, but their microbiomes were extremely similar and dominated by Endozoicomonas. This is the first report of coral microbiomes dominated by Endozoicomonas occurring below 1000 m, at temperatures near 4°C. D. pertusum from 2 Atlantic sites were also dominated by distinct Endozoicomonas, unlike D. pertusum from other sites described in previous studies, including the Gulf of Mexico, the Mediterranean Sea and a Norwegian fjord.