Detrital zircon U-Pb data reveal a Mississippian sediment dispersal network originating in the Appalachian orogen, traversing North America along its southern shelf, and reaching as far as the southwest United States

Recent detrital zircon U-Pb geochronology reveals an increasing proportion of Grenville-age (ca. 0.95–1.3 Ga) and ca. 300–480 Ma grains in late Paleozoic strata of the SW United States. These grain populations are interpreted to have been sourced from the Appalachian orogen, though the precise timin...

Full description

Bibliographic Details
Published in:Lithosphere
Main Authors: Chapman, Alan D., Laskowski, Andrew K.
Format: Article in Journal/Newspaper
Language:English
Published: 2019
Subjects:
Online Access:https://scholarworks.montana.edu/xmlui/handle/1/15810
id ftmontanastateu:oai:scholarworks.montana.edu:1/15810
record_format openpolar
spelling ftmontanastateu:oai:scholarworks.montana.edu:1/15810 2023-05-15T17:54:51+02:00 Detrital zircon U-Pb data reveal a Mississippian sediment dispersal network originating in the Appalachian orogen, traversing North America along its southern shelf, and reaching as far as the southwest United States Chapman, Alan D. Laskowski, Andrew K. 2019-06-19 application/pdf https://scholarworks.montana.edu/xmlui/handle/1/15810 en_US eng Chapman, Alan D., and Andrew K. Laskowski. "Detrital zircon U-Pb data reveal a Mississippian sediment dispersal network originating in the Appalachian orogen, traversing North America along its southern shelf, and reaching as far as the southwest United States." Lithosphere 11, no. 4 (June 2019): 581-587. DOI:10.1130/L1068.1. 1947-4253 https://scholarworks.montana.edu/xmlui/handle/1/15810 CC BY-NC: This license lets you remix, tweak, and build upon this work non-commercially, and although your new works must also acknowledge the original creator and be non-commercial, you don’t have to license your derivative works on the same terms. https://creativecommons.org/licenses/by-nc/4.0/legalcode CC-BY-NC Article 2019 ftmontanastateu https://doi.org/10.1130/L1068.1 2022-06-06T07:28:12Z Recent detrital zircon U-Pb geochronology reveals an increasing proportion of Grenville-age (ca. 0.95–1.3 Ga) and ca. 300–480 Ma grains in late Paleozoic strata of the SW United States. These grain populations are interpreted to have been sourced from the Appalachian orogen, though the precise timing, transport mechanisms, and pathway(s) of sediment dispersal remain unclear. We combine 35,796 published detrital zircon U-Pb ages from Ordovician to Pennsylvanian strata of southern Canada, northern Mexico, and the U.S. with new data (1,628 ages) from Kansas, Missouri, Montana, and South Dakota. These data are integrated with sedimentary structural data and paleogeographic reconstructions to reveal temporal and spatial patterns of the sediment routing system at continent scale. In Ordovician time, North America was partitioned into western, central, and eastern domains in which strata were derived primarily from the Peace River Arch, the Superior Craton, and the Appalachians, respectively. Silurian–Devonian time saw limited integration of these domains, corresponding with the delivery of Appalachian-derived detritus to the Midcontinent via prograding deltas and westward-flowing rivers. Appalachian detritus flowed westward in Mississippian time, accumulating in the Appalachian foreland and continuing westward through Mississippi, Arkansas, Missouri, Oklahoma, Kansas, Colorado, Arizona, and California along the continental shelf. Given that North America was at equatorial latitudes and was inundated by the Kaskaskia sea at this time, westward dispersal likely occurred by trade wind–driven longshore drift, waves, tides, and marine currents, with the possible added contribution of hurricanes. Modern analogs for the southern margin of North America during Mississippian time (e.g., the Great Barrier Reef and the east coast of South America) indicate that long-distance (>1000 km) shelf-parallel sediment transport is readily accomplished through fair-weather processes and extreme events. Finally, Appalachian-derived ... Article in Journal/Newspaper Peace River Montana State University (MSU): ScholarWorks Canada Lithosphere 11 4 581 587
institution Open Polar
collection Montana State University (MSU): ScholarWorks
op_collection_id ftmontanastateu
language English
description Recent detrital zircon U-Pb geochronology reveals an increasing proportion of Grenville-age (ca. 0.95–1.3 Ga) and ca. 300–480 Ma grains in late Paleozoic strata of the SW United States. These grain populations are interpreted to have been sourced from the Appalachian orogen, though the precise timing, transport mechanisms, and pathway(s) of sediment dispersal remain unclear. We combine 35,796 published detrital zircon U-Pb ages from Ordovician to Pennsylvanian strata of southern Canada, northern Mexico, and the U.S. with new data (1,628 ages) from Kansas, Missouri, Montana, and South Dakota. These data are integrated with sedimentary structural data and paleogeographic reconstructions to reveal temporal and spatial patterns of the sediment routing system at continent scale. In Ordovician time, North America was partitioned into western, central, and eastern domains in which strata were derived primarily from the Peace River Arch, the Superior Craton, and the Appalachians, respectively. Silurian–Devonian time saw limited integration of these domains, corresponding with the delivery of Appalachian-derived detritus to the Midcontinent via prograding deltas and westward-flowing rivers. Appalachian detritus flowed westward in Mississippian time, accumulating in the Appalachian foreland and continuing westward through Mississippi, Arkansas, Missouri, Oklahoma, Kansas, Colorado, Arizona, and California along the continental shelf. Given that North America was at equatorial latitudes and was inundated by the Kaskaskia sea at this time, westward dispersal likely occurred by trade wind–driven longshore drift, waves, tides, and marine currents, with the possible added contribution of hurricanes. Modern analogs for the southern margin of North America during Mississippian time (e.g., the Great Barrier Reef and the east coast of South America) indicate that long-distance (>1000 km) shelf-parallel sediment transport is readily accomplished through fair-weather processes and extreme events. Finally, Appalachian-derived ...
format Article in Journal/Newspaper
author Chapman, Alan D.
Laskowski, Andrew K.
spellingShingle Chapman, Alan D.
Laskowski, Andrew K.
Detrital zircon U-Pb data reveal a Mississippian sediment dispersal network originating in the Appalachian orogen, traversing North America along its southern shelf, and reaching as far as the southwest United States
author_facet Chapman, Alan D.
Laskowski, Andrew K.
author_sort Chapman, Alan D.
title Detrital zircon U-Pb data reveal a Mississippian sediment dispersal network originating in the Appalachian orogen, traversing North America along its southern shelf, and reaching as far as the southwest United States
title_short Detrital zircon U-Pb data reveal a Mississippian sediment dispersal network originating in the Appalachian orogen, traversing North America along its southern shelf, and reaching as far as the southwest United States
title_full Detrital zircon U-Pb data reveal a Mississippian sediment dispersal network originating in the Appalachian orogen, traversing North America along its southern shelf, and reaching as far as the southwest United States
title_fullStr Detrital zircon U-Pb data reveal a Mississippian sediment dispersal network originating in the Appalachian orogen, traversing North America along its southern shelf, and reaching as far as the southwest United States
title_full_unstemmed Detrital zircon U-Pb data reveal a Mississippian sediment dispersal network originating in the Appalachian orogen, traversing North America along its southern shelf, and reaching as far as the southwest United States
title_sort detrital zircon u-pb data reveal a mississippian sediment dispersal network originating in the appalachian orogen, traversing north america along its southern shelf, and reaching as far as the southwest united states
publishDate 2019
url https://scholarworks.montana.edu/xmlui/handle/1/15810
geographic Canada
geographic_facet Canada
genre Peace River
genre_facet Peace River
op_relation Chapman, Alan D., and Andrew K. Laskowski. "Detrital zircon U-Pb data reveal a Mississippian sediment dispersal network originating in the Appalachian orogen, traversing North America along its southern shelf, and reaching as far as the southwest United States." Lithosphere 11, no. 4 (June 2019): 581-587. DOI:10.1130/L1068.1.
1947-4253
https://scholarworks.montana.edu/xmlui/handle/1/15810
op_rights CC BY-NC: This license lets you remix, tweak, and build upon this work non-commercially, and although your new works must also acknowledge the original creator and be non-commercial, you don’t have to license your derivative works on the same terms.
https://creativecommons.org/licenses/by-nc/4.0/legalcode
op_rightsnorm CC-BY-NC
op_doi https://doi.org/10.1130/L1068.1
container_title Lithosphere
container_volume 11
container_issue 4
container_start_page 581
op_container_end_page 587
_version_ 1766162709902000128