Float-Derived Isopycnal Diffusivities in the DIMES Experiment

As part of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES), 210 subsurface floats were deployed west of the Drake Passage on two targeted density surfaces. Absolute (single particle) diffusivities are calculated for the floats. The focus is on the meridional component, wh...

Full description

Bibliographic Details
Published in:Journal of Physical Oceanography
Main Authors: LaCasce, Joseph H., Balwada, D., Speer, K., Ferrari, Raffaele, Marshall, John C., Tulloch, Ross
Other Authors: Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Format: Article in Journal/Newspaper
Language:English
Published: American Meteorological Society 2013
Subjects:
Online Access:http://hdl.handle.net/1721.1/90313
id ftmit:oai:dspace.mit.edu:1721.1/90313
record_format openpolar
spelling ftmit:oai:dspace.mit.edu:1721.1/90313 2023-06-11T04:04:29+02:00 Float-Derived Isopycnal Diffusivities in the DIMES Experiment LaCasce, Joseph H. Balwada, D. Speer, K. Ferrari, Raffaele Marshall, John C. Tulloch, Ross Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences Ferrari, Raffaele Marshall, John C. Tulloch, Ross 2013-11 application/pdf http://hdl.handle.net/1721.1/90313 en_US eng American Meteorological Society http://dx.doi.org/10.1175/jpo-d-13-0175.1 Journal of Physical Oceanography 0022-3670 1520-0485 http://hdl.handle.net/1721.1/90313 LaCasce, J. H., R. Ferrari, J. Marshall, R. Tulloch, D. Balwada, and K. Speer. “Float-Derived Isopycnal Diffusivities in the DIMES Experiment.” J. Phys. Oceanogr. 44, no. 2 (February 2014): 764–780. © 2014 American Meteorological Society orcid:0000-0002-3736-1956 orcid:0000-0001-9230-3591 Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. American Meteorological Society Article http://purl.org/eprint/type/JournalArticle 2013 ftmit https://doi.org/10.1175/jpo-d-13-0175.1 2023-05-29T08:16:07Z As part of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES), 210 subsurface floats were deployed west of the Drake Passage on two targeted density surfaces. Absolute (single particle) diffusivities are calculated for the floats. The focus is on the meridional component, which is less affected by the mean shear. The diffusivities are estimated in several ways, including a novel method based on the probability density function of the meridional displacements. This allows the determination of the range of possible lateral diffusivities, as well as the period over which the spreading can be said to be diffusive. The method is applied to the float data and to synthetic trajectories generated with the Massachusetts Institute of Technology General Circulation Model (MITgcm). Because of ballasting problems, many of the floats did not remain on their targeted density surface. However, the float temperature records suggest that most occupied a small range of densities, so the floats were grouped together for the analysis. The latter focuses on a subset of 109 of the floats, launched near 105°W. The different methods yield a consistent estimate for the diffusivity of 800 ± 200 m[superscript 2] s[superscript −1]. The same calculations were made with model particles deployed on 20 different density surfaces and the result for the particles deployed on the neutral density surface γ = 27.7 surface was the same within the errors. The model was then used to map the variation of the diffusivity in the vertical, near the core of the Antarctic Circumpolar Current (ACC). The results suggest mixing is intensified at middepths, between 1500 and 2000 m, consistent with several previous studies. National Science Foundation (U.S.) (Award OCE-1233832) National Science Foundation (U.S.) (Award OCE-1232962) Article in Journal/Newspaper Antarc* Antarctic Drake Passage Southern Ocean DSpace@MIT (Massachusetts Institute of Technology) Antarctic Southern Ocean The Antarctic Drake Passage Journal of Physical Oceanography 44 2 764 780
institution Open Polar
collection DSpace@MIT (Massachusetts Institute of Technology)
op_collection_id ftmit
language English
description As part of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES), 210 subsurface floats were deployed west of the Drake Passage on two targeted density surfaces. Absolute (single particle) diffusivities are calculated for the floats. The focus is on the meridional component, which is less affected by the mean shear. The diffusivities are estimated in several ways, including a novel method based on the probability density function of the meridional displacements. This allows the determination of the range of possible lateral diffusivities, as well as the period over which the spreading can be said to be diffusive. The method is applied to the float data and to synthetic trajectories generated with the Massachusetts Institute of Technology General Circulation Model (MITgcm). Because of ballasting problems, many of the floats did not remain on their targeted density surface. However, the float temperature records suggest that most occupied a small range of densities, so the floats were grouped together for the analysis. The latter focuses on a subset of 109 of the floats, launched near 105°W. The different methods yield a consistent estimate for the diffusivity of 800 ± 200 m[superscript 2] s[superscript −1]. The same calculations were made with model particles deployed on 20 different density surfaces and the result for the particles deployed on the neutral density surface γ = 27.7 surface was the same within the errors. The model was then used to map the variation of the diffusivity in the vertical, near the core of the Antarctic Circumpolar Current (ACC). The results suggest mixing is intensified at middepths, between 1500 and 2000 m, consistent with several previous studies. National Science Foundation (U.S.) (Award OCE-1233832) National Science Foundation (U.S.) (Award OCE-1232962)
author2 Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Ferrari, Raffaele
Marshall, John C.
Tulloch, Ross
format Article in Journal/Newspaper
author LaCasce, Joseph H.
Balwada, D.
Speer, K.
Ferrari, Raffaele
Marshall, John C.
Tulloch, Ross
spellingShingle LaCasce, Joseph H.
Balwada, D.
Speer, K.
Ferrari, Raffaele
Marshall, John C.
Tulloch, Ross
Float-Derived Isopycnal Diffusivities in the DIMES Experiment
author_facet LaCasce, Joseph H.
Balwada, D.
Speer, K.
Ferrari, Raffaele
Marshall, John C.
Tulloch, Ross
author_sort LaCasce, Joseph H.
title Float-Derived Isopycnal Diffusivities in the DIMES Experiment
title_short Float-Derived Isopycnal Diffusivities in the DIMES Experiment
title_full Float-Derived Isopycnal Diffusivities in the DIMES Experiment
title_fullStr Float-Derived Isopycnal Diffusivities in the DIMES Experiment
title_full_unstemmed Float-Derived Isopycnal Diffusivities in the DIMES Experiment
title_sort float-derived isopycnal diffusivities in the dimes experiment
publisher American Meteorological Society
publishDate 2013
url http://hdl.handle.net/1721.1/90313
geographic Antarctic
Southern Ocean
The Antarctic
Drake Passage
geographic_facet Antarctic
Southern Ocean
The Antarctic
Drake Passage
genre Antarc*
Antarctic
Drake Passage
Southern Ocean
genre_facet Antarc*
Antarctic
Drake Passage
Southern Ocean
op_source American Meteorological Society
op_relation http://dx.doi.org/10.1175/jpo-d-13-0175.1
Journal of Physical Oceanography
0022-3670
1520-0485
http://hdl.handle.net/1721.1/90313
LaCasce, J. H., R. Ferrari, J. Marshall, R. Tulloch, D. Balwada, and K. Speer. “Float-Derived Isopycnal Diffusivities in the DIMES Experiment.” J. Phys. Oceanogr. 44, no. 2 (February 2014): 764–780. © 2014 American Meteorological Society
orcid:0000-0002-3736-1956
orcid:0000-0001-9230-3591
op_rights Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
op_doi https://doi.org/10.1175/jpo-d-13-0175.1
container_title Journal of Physical Oceanography
container_volume 44
container_issue 2
container_start_page 764
op_container_end_page 780
_version_ 1768388177991565312