Adaptive Stochastic Reduced-Order Modeling for Autonomous Ocean Platforms

Onboard forecasting and data assimilation are challenging but essential for unmanned autonomous ocean platforms. Due to the numerous operational constraints for these platforms, efficient adaptive reduced-order models (ROMs) are needed. In this thesis, we first review existing approaches and then de...

Full description

Bibliographic Details
Main Author: Ryu, Young Hyun (Tony)
Other Authors: Lermusiaux, Pierre F.J., Massachusetts Institute of Technology. Center for Computational Science and Engineering
Format: Thesis
Language:unknown
Published: Massachusetts Institute of Technology 2022
Subjects:
Online Access:https://hdl.handle.net/1721.1/147333
Description
Summary:Onboard forecasting and data assimilation are challenging but essential for unmanned autonomous ocean platforms. Due to the numerous operational constraints for these platforms, efficient adaptive reduced-order models (ROMs) are needed. In this thesis, we first review existing approaches and then develop a new adaptive Dynamic Mode Decomposition (DMD)-based, data-driven, reduced-order model framework that provides onboard forecasting and data assimilation capabilities for bandwidthdisadvantaged autonomous ocean platforms. We refer to the new adaptive ROM as the incremental, stochastic Low-Rank Dynamic Mode Decomposition (iLRDMD) algorithm. Given a set of high-fidelity and high-dimensional stochastic forecasts computed in remote centers, this framework enables i) efficient and accurate send and receive of the high-fidelity forecasts, ii) incremental update of the onboard reducedorder model, iii) data-driven onboard forecasting, and iv) onboard ROM data assimilation and learning. We analyze the computational costs for the compression, communications, incremental updates, and onboard forecasts. We evaluate the adaptive ROM using a simple 2D flow behind an island, both as a test case to develop the method, and to investigate the parameter sensitivity and algorithmic design choices. We develop the extension of deterministic iLRDMD to stochastic applications with uncertain ocean forecasts. We then demonstrate the adaptive ROM on more complex ocean fields ranging from univariate 2D, univariate 3D, and multivariate 3D fields from multi-resolution, data-assimilative Multidisciplinary Simulation, Estimation, and Assimilation Systems (MSEAS) reanalyses, specifically from the real-time exercises in the Middle Atlantic Bight region. We also highlight our results using the Navy’s Hybrid Coordinate Ocean Model (HYCOM) forecasts in the North Atlantic region. We then apply the adaptive ROM onboard forecasting algorithm to interdisciplinary applications, showcasing adaptive reduced-order forecasts for onboard underwater acoustics ...