A modeling study of the marine biogeochemistry, plankton dynamics, and carbon cycle on the continental shelf off the West Antarctic Peninsula
Thesis: Ph. D., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2019 Cataloged from PDF version of thesis. Includes bibliographical ref...
Main Author: | |
---|---|
Other Authors: | , , , , , , |
Format: | Thesis |
Language: | English |
Published: |
Massachusetts Institute of Technology
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/1721.1/122331 |
_version_ | 1829941834492674048 |
---|---|
author | Schultz, Cristina. |
author2 | Scott C. Doney and Weifeng Zhang. Joint Program in Oceanography/Applied Ocean Science and Engineering. Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences. Woods Hole Oceanographic Institution. Joint Program in Oceanography/Applied Ocean Science and Engineering Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences Woods Hole Oceanographic Institution |
author_facet | Schultz, Cristina. |
author_sort | Schultz, Cristina. |
collection | DSpace@MIT (Massachusetts Institute of Technology) |
description | Thesis: Ph. D., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2019 Cataloged from PDF version of thesis. Includes bibliographical references (pages 189-202). Over the past several decades, the West Antarctic Peninsula (WAP) has undergone physical and ecological changes at a rapid pace, with warming surface ocean and a sharp decrease in the duration of the sea ice season. The impact of these changes in the ocean chemistry and ecosystem are not fully understood and have been investigated by the Palmer-LTER since 1991. Given the data acquisition constraints imposed by weather conditions in this region, an ocean circulation, sea ice and biogeochemistry model was implemented to help fill the gaps in the dataset. The results with the present best case from the suite of sensitivity experiments indicate that the model is able to represent the seasonal and interannual variations observed in the circulation, water mass distribution and sea ice observed in the WAP, and has identified gaps in the observations that could guide improvement of the simulation of the regional biogeochemistry. Comparison of model results with data from the Palmer-LTER project suggests that the large spatial and temporal variability observed in the phytoplankton bloom in the WAP is influenced by variability in the glacial sources of dissolved iron. Seasonal progression of the phytoplankton bloom is well represented in the model, and values of vertically integrated net primary production (NPP) are largely consistent with observations. Although a bias towards lower surface dissolved inorganic carbon (DIC) and alkalinity was identified in the model results, interannual variability was similar to the observed in the Palmer-LTER cruise data. by Cristina Schultz. Ph. D. Ph.D. Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of ... |
format | Thesis |
genre | Antarc* Antarctic Antarctic Peninsula Sea ice |
genre_facet | Antarc* Antarctic Antarctic Peninsula Sea ice |
geographic | Antarctic Antarctic Peninsula |
geographic_facet | Antarctic Antarctic Peninsula |
id | ftmit:oai:dspace.mit.edu:1721.1/122331 |
institution | Open Polar |
language | English |
op_collection_id | ftmit |
op_coverage | t --- |
op_relation | https://hdl.handle.net/1721.1/122331 1119388692 |
op_rights | MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582 |
publishDate | 2019 |
publisher | Massachusetts Institute of Technology |
record_format | openpolar |
spelling | ftmit:oai:dspace.mit.edu:1721.1/122331 2025-04-20T14:23:44+00:00 A modeling study of the marine biogeochemistry, plankton dynamics, and carbon cycle on the continental shelf off the West Antarctic Peninsula Schultz, Cristina. Scott C. Doney and Weifeng Zhang. Joint Program in Oceanography/Applied Ocean Science and Engineering. Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences. Woods Hole Oceanographic Institution. Joint Program in Oceanography/Applied Ocean Science and Engineering Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences Woods Hole Oceanographic Institution t --- 2019 202 pages application/pdf https://hdl.handle.net/1721.1/122331 eng eng Massachusetts Institute of Technology https://hdl.handle.net/1721.1/122331 1119388692 MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582 Joint Program in Oceanography/Applied Ocean Science and Engineering Earth Atmospheric and Planetary Sciences Woods Hole Oceanographic Institution Ocean temperature Biogeochemistry Plankton Carbon cycle (Biogeochemistry) Thesis 2019 ftmit 2025-03-21T06:47:39Z Thesis: Ph. D., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2019 Cataloged from PDF version of thesis. Includes bibliographical references (pages 189-202). Over the past several decades, the West Antarctic Peninsula (WAP) has undergone physical and ecological changes at a rapid pace, with warming surface ocean and a sharp decrease in the duration of the sea ice season. The impact of these changes in the ocean chemistry and ecosystem are not fully understood and have been investigated by the Palmer-LTER since 1991. Given the data acquisition constraints imposed by weather conditions in this region, an ocean circulation, sea ice and biogeochemistry model was implemented to help fill the gaps in the dataset. The results with the present best case from the suite of sensitivity experiments indicate that the model is able to represent the seasonal and interannual variations observed in the circulation, water mass distribution and sea ice observed in the WAP, and has identified gaps in the observations that could guide improvement of the simulation of the regional biogeochemistry. Comparison of model results with data from the Palmer-LTER project suggests that the large spatial and temporal variability observed in the phytoplankton bloom in the WAP is influenced by variability in the glacial sources of dissolved iron. Seasonal progression of the phytoplankton bloom is well represented in the model, and values of vertically integrated net primary production (NPP) are largely consistent with observations. Although a bias towards lower surface dissolved inorganic carbon (DIC) and alkalinity was identified in the model results, interannual variability was similar to the observed in the Palmer-LTER cruise data. by Cristina Schultz. Ph. D. Ph.D. Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of ... Thesis Antarc* Antarctic Antarctic Peninsula Sea ice DSpace@MIT (Massachusetts Institute of Technology) Antarctic Antarctic Peninsula |
spellingShingle | Joint Program in Oceanography/Applied Ocean Science and Engineering Earth Atmospheric and Planetary Sciences Woods Hole Oceanographic Institution Ocean temperature Biogeochemistry Plankton Carbon cycle (Biogeochemistry) Schultz, Cristina. A modeling study of the marine biogeochemistry, plankton dynamics, and carbon cycle on the continental shelf off the West Antarctic Peninsula |
title | A modeling study of the marine biogeochemistry, plankton dynamics, and carbon cycle on the continental shelf off the West Antarctic Peninsula |
title_full | A modeling study of the marine biogeochemistry, plankton dynamics, and carbon cycle on the continental shelf off the West Antarctic Peninsula |
title_fullStr | A modeling study of the marine biogeochemistry, plankton dynamics, and carbon cycle on the continental shelf off the West Antarctic Peninsula |
title_full_unstemmed | A modeling study of the marine biogeochemistry, plankton dynamics, and carbon cycle on the continental shelf off the West Antarctic Peninsula |
title_short | A modeling study of the marine biogeochemistry, plankton dynamics, and carbon cycle on the continental shelf off the West Antarctic Peninsula |
title_sort | modeling study of the marine biogeochemistry, plankton dynamics, and carbon cycle on the continental shelf off the west antarctic peninsula |
topic | Joint Program in Oceanography/Applied Ocean Science and Engineering Earth Atmospheric and Planetary Sciences Woods Hole Oceanographic Institution Ocean temperature Biogeochemistry Plankton Carbon cycle (Biogeochemistry) |
topic_facet | Joint Program in Oceanography/Applied Ocean Science and Engineering Earth Atmospheric and Planetary Sciences Woods Hole Oceanographic Institution Ocean temperature Biogeochemistry Plankton Carbon cycle (Biogeochemistry) |
url | https://hdl.handle.net/1721.1/122331 |