An assessment of reverse electrodialysis for application to small-scale aquatic systems

Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2018. This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Cataloged from student-submitted PDF version of thesis. I...

Full description

Bibliographic Details
Main Author: Samland, Marc C. (Marc Christopher)
Other Authors: Douglas P. Hart., Massachusetts Institute of Technology. Department of Mechanical Engineering.
Format: Thesis
Language:English
Published: Massachusetts Institute of Technology 2018
Subjects:
Online Access:http://hdl.handle.net/1721.1/118673
id ftmit:oai:dspace.mit.edu:1721.1/118673
record_format openpolar
spelling ftmit:oai:dspace.mit.edu:1721.1/118673 2023-06-11T04:09:54+02:00 An assessment of reverse electrodialysis for application to small-scale aquatic systems Samland, Marc C. (Marc Christopher) Douglas P. Hart. Massachusetts Institute of Technology. Department of Mechanical Engineering. 2018 88 pages application/pdf http://hdl.handle.net/1721.1/118673 eng eng Massachusetts Institute of Technology http://hdl.handle.net/1721.1/118673 1057361865 MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582 Mechanical Engineering Thesis 2018 ftmit 2023-05-29T07:28:18Z Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2018. This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Cataloged from student-submitted PDF version of thesis. Includes bibliographical references (pages 84-88). Reverse electrodialysis (RED) is a means by which to produce electrical power through the flow of Na+ and Cl- ions from seawater to fresh water across ion selective membranes. While current research has largely focused on utilizing RED for large-scale commercial power, this thesis explores the feasibility of using RED as a power source for remote sensing devices and unmanned underwater vehicles, with a specific focus on the Arctic Ocean. A parameter sweep is developed using MATLAB in order to estimate the ideal dimensions and flow rates for an RED stack with respect to its volumetric power density. Unlike previous models, this model accounts for considerations unique to RED's application to unmanned underwater vehicles and remote sensing devices in variable environmental conditions. The model maintains broad generality for use with a variety of RED design configurations, while also demonstrating agreement with empirical data collected from specific experimental tests. The computational model is validated by empirical data from three previous studies and used to find a specific and volumetric power density for RED of 2.35 W/kg and 206 �10⁻³ W/cm³ at 298K with salt concentrations of 0.7 and 35 g NaCl/ kg H₂O. This thesis then compares RED to other environmental energy harvesting systems and determines RED to be a competitive power source within the environmental constraints of the Artic. Regarding the use of RED as a secondary power source to charge lithium ion batteries, it is found that it would require an RED stack over four days to recharge a lithium ion battery of equal mass and over thirteen days for a battery of equal volume. For use with low power systems ... Thesis Arctic Arctic Ocean DSpace@MIT (Massachusetts Institute of Technology) Arctic Arctic Ocean
institution Open Polar
collection DSpace@MIT (Massachusetts Institute of Technology)
op_collection_id ftmit
language English
topic Mechanical Engineering
spellingShingle Mechanical Engineering
Samland, Marc C. (Marc Christopher)
An assessment of reverse electrodialysis for application to small-scale aquatic systems
topic_facet Mechanical Engineering
description Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2018. This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Cataloged from student-submitted PDF version of thesis. Includes bibliographical references (pages 84-88). Reverse electrodialysis (RED) is a means by which to produce electrical power through the flow of Na+ and Cl- ions from seawater to fresh water across ion selective membranes. While current research has largely focused on utilizing RED for large-scale commercial power, this thesis explores the feasibility of using RED as a power source for remote sensing devices and unmanned underwater vehicles, with a specific focus on the Arctic Ocean. A parameter sweep is developed using MATLAB in order to estimate the ideal dimensions and flow rates for an RED stack with respect to its volumetric power density. Unlike previous models, this model accounts for considerations unique to RED's application to unmanned underwater vehicles and remote sensing devices in variable environmental conditions. The model maintains broad generality for use with a variety of RED design configurations, while also demonstrating agreement with empirical data collected from specific experimental tests. The computational model is validated by empirical data from three previous studies and used to find a specific and volumetric power density for RED of 2.35 W/kg and 206 �10⁻³ W/cm³ at 298K with salt concentrations of 0.7 and 35 g NaCl/ kg H₂O. This thesis then compares RED to other environmental energy harvesting systems and determines RED to be a competitive power source within the environmental constraints of the Artic. Regarding the use of RED as a secondary power source to charge lithium ion batteries, it is found that it would require an RED stack over four days to recharge a lithium ion battery of equal mass and over thirteen days for a battery of equal volume. For use with low power systems ...
author2 Douglas P. Hart.
Massachusetts Institute of Technology. Department of Mechanical Engineering.
format Thesis
author Samland, Marc C. (Marc Christopher)
author_facet Samland, Marc C. (Marc Christopher)
author_sort Samland, Marc C. (Marc Christopher)
title An assessment of reverse electrodialysis for application to small-scale aquatic systems
title_short An assessment of reverse electrodialysis for application to small-scale aquatic systems
title_full An assessment of reverse electrodialysis for application to small-scale aquatic systems
title_fullStr An assessment of reverse electrodialysis for application to small-scale aquatic systems
title_full_unstemmed An assessment of reverse electrodialysis for application to small-scale aquatic systems
title_sort assessment of reverse electrodialysis for application to small-scale aquatic systems
publisher Massachusetts Institute of Technology
publishDate 2018
url http://hdl.handle.net/1721.1/118673
geographic Arctic
Arctic Ocean
geographic_facet Arctic
Arctic Ocean
genre Arctic
Arctic Ocean
genre_facet Arctic
Arctic Ocean
op_relation http://hdl.handle.net/1721.1/118673
1057361865
op_rights MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.
http://dspace.mit.edu/handle/1721.1/7582
_version_ 1768383910812581888