A Review of and Perspectives on Global Change Modeling for Northern Eurasia

Northern Eurasia is made up of a complex and diverse set of physical, ecological, climatic and human systems, which provide important ecosystem services including the storage of substantial stocks of carbon in its terrestrial ecosystems. At the same time, the region has experienced dramatic climate...

Full description

Bibliographic Details
Main Authors: Monier, E., Kicklighter, D., Sokolov, A., Zhuang, Q., Sokolik, I., Lawford, R., Kappas, M., Paltsev, S., Groisman, P.
Format: Report
Language:English
Published: MIT Joint Program on the Science and Policy of Global Change 2017
Subjects:
Online Access:http://hdl.handle.net/1721.1/111811
Description
Summary:Northern Eurasia is made up of a complex and diverse set of physical, ecological, climatic and human systems, which provide important ecosystem services including the storage of substantial stocks of carbon in its terrestrial ecosystems. At the same time, the region has experienced dramatic climate change, natural disturbances and changes in land management practices over the past century. For these reasons, Northern Eurasia is both a critical region to understand and a complex system with substantial challenges for the modeling community. This review is designed to highlight the state of past and ongoing efforts of the research community to understand and model these environmental, socioeconomic, and climatic changes. We further aim to provide perspectives on the future direction of global change modeling to improve our understanding of the role of Northern Eurasia in the coupled human-Earth system. Major modeling efforts have shown that environmental and socioeconomic impacts in Northern Eurasia can have major implications for the biodiversity, ecosystems services, environmental sustainability, and carbon cycle of the region, and beyond. These impacts have the potential to feedback onto and alter the global Earth system. We find that past and ongoing studies have largely focused on specific components of Earth system dynamics and have not systematically examined their feedbacks to the global Earth system and to society. We identify the crucial role of Earth system models in advancing our understanding of feedbacks within the region and with the global system. We further argue for the need for Integrated Assessment Models (IAMs), a suite of models that couple human activity models to Earth system models, which are key to address many emerging issues that require a representation of the coupled human-Earth system. We acknowledge the funding from the US National Aeronautics and Space Administration (NASA) Land-Cover and Land-Use Change (LCLUC) Program, which provided support for Erwan Monier, David Kicklighter, Andrei Sokolov, Qianlai Zhuang and Sergey Paltsev under grant NNX14AD91G and Irina Sokolik under grant NNX14AD88G. Support for Pavel Groisman was provided by Grant 14.B25.31.0026 of the Ministry of Education and Science of the Russian Federation and by Project “Arctic Climate Change and its Impact on Environment, Infrastructures, and Resource Availability” sponsored by ANR (France), RFBR (Russia), and NSF (USA) in response to Belmont Forum Collaborative Research Action on Arctic Observing and Research for Sustainability. The Joint Program on the Science and Policy of Global Change is funded by a number of federal agencies and a consortium of 40 industrial and foundation sponsor (for the complete list see http://globalchange.mit.edu/sponsors).