Multi-modal and short-range transmission loss in thin, ice-covered, near-shore Arctic waters
In the past century, extensive research has been done regarding the sound propagation in Arctic ice sheets. The majority of this research has focused on low-frequency propagation over long distances. Due to changing climate conditions in these environments, experimentation is warranted to determine...
Published in: | The Journal of the Acoustical Society of America |
---|---|
Main Authors: | , , |
Format: | Text |
Language: | unknown |
Published: |
Digital Commons @ Michigan Tech
2018
|
Subjects: | |
Online Access: | https://digitalcommons.mtu.edu/michigantech-p/2424 https://doi.org/10.1121/1.5038569 |
id |
ftmichigantuniv:oai:digitalcommons.mtu.edu:michigantech-p-3414 |
---|---|
record_format |
openpolar |
spelling |
ftmichigantuniv:oai:digitalcommons.mtu.edu:michigantech-p-3414 2023-05-15T14:57:40+02:00 Multi-modal and short-range transmission loss in thin, ice-covered, near-shore Arctic waters Penhale, Miles B Barnard, Andrew Shuchman, Robert 2018-05-01T07:00:00Z https://digitalcommons.mtu.edu/michigantech-p/2424 https://doi.org/10.1121/1.5038569 unknown Digital Commons @ Michigan Tech https://digitalcommons.mtu.edu/michigantech-p/2424 https://doi.org/10.1121/1.5038569 Michigan Tech Publications Department of Mechanical Engineering-Engineering Mechanics Michigan Tech Research Institute Mechanical Engineering text 2018 ftmichigantuniv https://doi.org/10.1121/1.5038569 2022-01-23T10:41:48Z In the past century, extensive research has been done regarding the sound propagation in Arctic ice sheets. The majority of this research has focused on low-frequency propagation over long distances. Due to changing climate conditions in these environments, experimentation is warranted to determine sound propagation characteristics in, through, and under first-year, thin ice sheets, in shallow water, over short distances. In April 2016 several experiments were conducted approximately 2 km off the coast of Barrow, Alaska on shore-fast, first-year ice, approximately 1 m thick. To determine the propagation characteristics of various sound sources, frequency response functions were measured between a source location and several receiver locations at various distances from 1 m to 1 km. The primary sources used for this experiment were, an underwater speaker with various tonal outputs, an instrumented impact hammer on the ice, and a propane cannon that produced an acoustic blast wave in air. The transmission loss (TL) characteristics of the multipath propagation (air, ice, water) are investigated and reported. Data indicate that TL in frequency bands between 125 and 2000 Hz varied from approximately 3-6 dB per doubling of distance which is consistent with geometrical spreading losses, cylindrical and spherical, respectively. Text Arctic Barrow Alaska Michigan Technological University: Digital Commons @ Michigan Tech Arctic The Journal of the Acoustical Society of America 143 5 3126 3137 |
institution |
Open Polar |
collection |
Michigan Technological University: Digital Commons @ Michigan Tech |
op_collection_id |
ftmichigantuniv |
language |
unknown |
topic |
Department of Mechanical Engineering-Engineering Mechanics Michigan Tech Research Institute Mechanical Engineering |
spellingShingle |
Department of Mechanical Engineering-Engineering Mechanics Michigan Tech Research Institute Mechanical Engineering Penhale, Miles B Barnard, Andrew Shuchman, Robert Multi-modal and short-range transmission loss in thin, ice-covered, near-shore Arctic waters |
topic_facet |
Department of Mechanical Engineering-Engineering Mechanics Michigan Tech Research Institute Mechanical Engineering |
description |
In the past century, extensive research has been done regarding the sound propagation in Arctic ice sheets. The majority of this research has focused on low-frequency propagation over long distances. Due to changing climate conditions in these environments, experimentation is warranted to determine sound propagation characteristics in, through, and under first-year, thin ice sheets, in shallow water, over short distances. In April 2016 several experiments were conducted approximately 2 km off the coast of Barrow, Alaska on shore-fast, first-year ice, approximately 1 m thick. To determine the propagation characteristics of various sound sources, frequency response functions were measured between a source location and several receiver locations at various distances from 1 m to 1 km. The primary sources used for this experiment were, an underwater speaker with various tonal outputs, an instrumented impact hammer on the ice, and a propane cannon that produced an acoustic blast wave in air. The transmission loss (TL) characteristics of the multipath propagation (air, ice, water) are investigated and reported. Data indicate that TL in frequency bands between 125 and 2000 Hz varied from approximately 3-6 dB per doubling of distance which is consistent with geometrical spreading losses, cylindrical and spherical, respectively. |
format |
Text |
author |
Penhale, Miles B Barnard, Andrew Shuchman, Robert |
author_facet |
Penhale, Miles B Barnard, Andrew Shuchman, Robert |
author_sort |
Penhale, Miles B |
title |
Multi-modal and short-range transmission loss in thin, ice-covered, near-shore Arctic waters |
title_short |
Multi-modal and short-range transmission loss in thin, ice-covered, near-shore Arctic waters |
title_full |
Multi-modal and short-range transmission loss in thin, ice-covered, near-shore Arctic waters |
title_fullStr |
Multi-modal and short-range transmission loss in thin, ice-covered, near-shore Arctic waters |
title_full_unstemmed |
Multi-modal and short-range transmission loss in thin, ice-covered, near-shore Arctic waters |
title_sort |
multi-modal and short-range transmission loss in thin, ice-covered, near-shore arctic waters |
publisher |
Digital Commons @ Michigan Tech |
publishDate |
2018 |
url |
https://digitalcommons.mtu.edu/michigantech-p/2424 https://doi.org/10.1121/1.5038569 |
geographic |
Arctic |
geographic_facet |
Arctic |
genre |
Arctic Barrow Alaska |
genre_facet |
Arctic Barrow Alaska |
op_source |
Michigan Tech Publications |
op_relation |
https://digitalcommons.mtu.edu/michigantech-p/2424 https://doi.org/10.1121/1.5038569 |
op_doi |
https://doi.org/10.1121/1.5038569 |
container_title |
The Journal of the Acoustical Society of America |
container_volume |
143 |
container_issue |
5 |
container_start_page |
3126 |
op_container_end_page |
3137 |
_version_ |
1766329800522203136 |