Monitoring morphologic surface changes from aerial and satellite imagery, on Earth and Mars
The analysis of satellites imagery acquired at different dates allows the measurement of Earth surface displacement (earthquake ground deformation, glacier advance and retreat, sand dunes migration, slow-moving landslide,…) that occured between the images acquisitions. In this thesis we investigate...
Main Author: | |
---|---|
Other Authors: | , , , , , , , |
Format: | Doctoral or Postdoctoral Thesis |
Language: | English |
Published: |
HAL CCSD
2014
|
Subjects: | |
Online Access: | https://theses.hal.science/tel-01101043 https://theses.hal.science/tel-01101043/document https://theses.hal.science/tel-01101043/file/theseFAyoub.pdf |
Summary: | The analysis of satellites imagery acquired at different dates allows the measurement of Earth surface displacement (earthquake ground deformation, glacier advance and retreat, sand dunes migration, slow-moving landslide,…) that occured between the images acquisitions. In this thesis we investigate 1) the extension of the processing techniques established for satellite imagery to aerial imagery, and 2) the applicability of Earth-based technique to monitor eolian surface processes on Mars.Aerial imagery, whose first acquisition dates back decades before the satellite era, and whose ground resolution is higher than satellite one, can be relevant to monitor Earth surface displacement. We present a methodological extension of the satellite technique to aerial imagery. Potential and limitations are investigated. Application to the Krafla rift opening in Iceland (1975-1984), using aerial imagery, declassied spy imagery, and modern satellite imagery is presented.Next, we applied the method to Mars imagery taking advantage of the high resolution HiRISE instrument. A pair of HiRISE images is processed to monitor the activitys of a dune field. We measured sand ripple migration and inferred a sand flux comparable to some the Earth dune fields sand flux. We then expand our processing to a time-series of 10 HiRISE images, and characterized the seasonal variability of the sand flux throughout the year. This seasonal sand flux variability is used jointly with a sand flux prediction from atmospheric simulations to constrain the sand mobility threshold. Les progrés en télédétection permettent désormais une mesure dense et précise des déplacements de la surface terrestre à partir de l'analyse fine d'images satellitaires acquises à différentes dates. Ces méthodes permettent de détecter et de quantifier par exemple la déformation co-sismique du sol, l'avancée ou le recul de glacier, la migration de dunes, ou les glissements de terrain, survenus entre les dates d'acquisition des images. Au cours de cette thèse nous étudions 1) ... |
---|