Spatial Variability of Nocturnal Stability Regimes in an Operational Weather Prediction Model

International audience Forecast errors in near-surface temperatures are a persistent issue for numerical weather prediction models. A prominent example is warm biases during cloud-free, snow-covered nights. Many studies attribute these biases to parametrized processes such as turbulence or radiation...

Full description

Bibliographic Details
Published in:Boundary-Layer Meteorology
Main Authors: Kähnert, Marvin, Sodemann, Harald, Remes, Teresa, M, Fortelius, Carl, Bazile, Eric, Esau, Igor
Other Authors: Bjerknes Centre for Climate Research (BCCR), Department of Biological Sciences Bergen (BIO / UiB), University of Bergen (UiB)-University of Bergen (UiB), Norwegian Meteorological Institute Oslo (MET), Finnish Meteorological Institute (FMI), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS), The Arctic University of Norway Tromsø, Norway (UiT)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2022
Subjects:
Online Access:https://meteofrance.hal.science/meteo-04444315
https://meteofrance.hal.science/meteo-04444315/document
https://meteofrance.hal.science/meteo-04444315/file/s10546-022-00762-1.pdf
https://doi.org/10.1007/s10546-022-00762-1
id ftmeteofrance:oai:HAL:meteo-04444315v1
record_format openpolar
institution Open Polar
collection Météo-France: HAL
op_collection_id ftmeteofrance
language English
topic Numerical weather prediction
Physical tendencies
Stability regimes
Stable boundary layer
[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology
spellingShingle Numerical weather prediction
Physical tendencies
Stability regimes
Stable boundary layer
[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology
Kähnert, Marvin
Sodemann, Harald
Remes, Teresa, M
Fortelius, Carl
Bazile, Eric
Esau, Igor
Spatial Variability of Nocturnal Stability Regimes in an Operational Weather Prediction Model
topic_facet Numerical weather prediction
Physical tendencies
Stability regimes
Stable boundary layer
[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology
description International audience Forecast errors in near-surface temperatures are a persistent issue for numerical weather prediction models. A prominent example is warm biases during cloud-free, snow-covered nights. Many studies attribute these biases to parametrized processes such as turbulence or radiation. Here, we focus on the contribution of physical processes to the nocturnal temperature development. We compare model timestep output of individual tendencies from parametrized processes in the weather prediction model AROME-Arctic to measurements from Sodankylä, Finland. Thereby, we differentiate between the weakly stable boundary layer (wSBL) and the very stable boundary layer (vSBL) regimes. The wSBL is characterized by continuous turbulent exchange within the near-surface atmosphere, causing near-neutral temperature profiles. The vSBL is characterized by a decoupling of the lowermost model level, low turbulent exchange, and very stable temperature profiles. In our case study, both regimes occur simultaneously on small spatial scales of about 5 km. In addition, we demonstrate the model's sensitivity towards an updated surface treatment, allowing for faster surface cooling. The updated surface parametrization has profound impacts on parametrized processes in both regimes. However, only modelled temperatures in the vSBL are impacted substantially, whereas more efficient surface cooling in the wSBL is compensated by an increased turbulent heat transport within the boundary layer. This study demonstrates the utility of individual tendencies for understanding process-related differences between model configurations and emphasizes the need for model studies to distinguish between the wSBL and vSBL for reliable model verification.
author2 Bjerknes Centre for Climate Research (BCCR)
Department of Biological Sciences Bergen (BIO / UiB)
University of Bergen (UiB)-University of Bergen (UiB)
Norwegian Meteorological Institute Oslo (MET)
Finnish Meteorological Institute (FMI)
Centre national de recherches météorologiques (CNRM)
Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)
The Arctic University of Norway Tromsø, Norway (UiT)
format Article in Journal/Newspaper
author Kähnert, Marvin
Sodemann, Harald
Remes, Teresa, M
Fortelius, Carl
Bazile, Eric
Esau, Igor
author_facet Kähnert, Marvin
Sodemann, Harald
Remes, Teresa, M
Fortelius, Carl
Bazile, Eric
Esau, Igor
author_sort Kähnert, Marvin
title Spatial Variability of Nocturnal Stability Regimes in an Operational Weather Prediction Model
title_short Spatial Variability of Nocturnal Stability Regimes in an Operational Weather Prediction Model
title_full Spatial Variability of Nocturnal Stability Regimes in an Operational Weather Prediction Model
title_fullStr Spatial Variability of Nocturnal Stability Regimes in an Operational Weather Prediction Model
title_full_unstemmed Spatial Variability of Nocturnal Stability Regimes in an Operational Weather Prediction Model
title_sort spatial variability of nocturnal stability regimes in an operational weather prediction model
publisher HAL CCSD
publishDate 2022
url https://meteofrance.hal.science/meteo-04444315
https://meteofrance.hal.science/meteo-04444315/document
https://meteofrance.hal.science/meteo-04444315/file/s10546-022-00762-1.pdf
https://doi.org/10.1007/s10546-022-00762-1
genre Sodankylä
genre_facet Sodankylä
op_source ISSN: 0006-8314
EISSN: 1573-1472
Boundary-Layer Meteorology
https://meteofrance.hal.science/meteo-04444315
Boundary-Layer Meteorology, 2022, 186 (2), pp.373 - 397. ⟨10.1007/s10546-022-00762-1⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1007/s10546-022-00762-1
meteo-04444315
https://meteofrance.hal.science/meteo-04444315
https://meteofrance.hal.science/meteo-04444315/document
https://meteofrance.hal.science/meteo-04444315/file/s10546-022-00762-1.pdf
doi:10.1007/s10546-022-00762-1
op_rights http://creativecommons.org/licenses/by/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1007/s10546-022-00762-1
container_title Boundary-Layer Meteorology
container_volume 186
container_issue 2
container_start_page 373
op_container_end_page 397
_version_ 1810479176242692096
spelling ftmeteofrance:oai:HAL:meteo-04444315v1 2024-09-15T18:35:59+00:00 Spatial Variability of Nocturnal Stability Regimes in an Operational Weather Prediction Model Kähnert, Marvin Sodemann, Harald Remes, Teresa, M Fortelius, Carl Bazile, Eric Esau, Igor Bjerknes Centre for Climate Research (BCCR) Department of Biological Sciences Bergen (BIO / UiB) University of Bergen (UiB)-University of Bergen (UiB) Norwegian Meteorological Institute Oslo (MET) Finnish Meteorological Institute (FMI) Centre national de recherches météorologiques (CNRM) Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS) The Arctic University of Norway Tromsø, Norway (UiT) 2022-11-15 https://meteofrance.hal.science/meteo-04444315 https://meteofrance.hal.science/meteo-04444315/document https://meteofrance.hal.science/meteo-04444315/file/s10546-022-00762-1.pdf https://doi.org/10.1007/s10546-022-00762-1 en eng HAL CCSD Springer Verlag info:eu-repo/semantics/altIdentifier/doi/10.1007/s10546-022-00762-1 meteo-04444315 https://meteofrance.hal.science/meteo-04444315 https://meteofrance.hal.science/meteo-04444315/document https://meteofrance.hal.science/meteo-04444315/file/s10546-022-00762-1.pdf doi:10.1007/s10546-022-00762-1 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess ISSN: 0006-8314 EISSN: 1573-1472 Boundary-Layer Meteorology https://meteofrance.hal.science/meteo-04444315 Boundary-Layer Meteorology, 2022, 186 (2), pp.373 - 397. ⟨10.1007/s10546-022-00762-1⟩ Numerical weather prediction Physical tendencies Stability regimes Stable boundary layer [SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology info:eu-repo/semantics/article Journal articles 2022 ftmeteofrance https://doi.org/10.1007/s10546-022-00762-1 2024-06-25T00:01:47Z International audience Forecast errors in near-surface temperatures are a persistent issue for numerical weather prediction models. A prominent example is warm biases during cloud-free, snow-covered nights. Many studies attribute these biases to parametrized processes such as turbulence or radiation. Here, we focus on the contribution of physical processes to the nocturnal temperature development. We compare model timestep output of individual tendencies from parametrized processes in the weather prediction model AROME-Arctic to measurements from Sodankylä, Finland. Thereby, we differentiate between the weakly stable boundary layer (wSBL) and the very stable boundary layer (vSBL) regimes. The wSBL is characterized by continuous turbulent exchange within the near-surface atmosphere, causing near-neutral temperature profiles. The vSBL is characterized by a decoupling of the lowermost model level, low turbulent exchange, and very stable temperature profiles. In our case study, both regimes occur simultaneously on small spatial scales of about 5 km. In addition, we demonstrate the model's sensitivity towards an updated surface treatment, allowing for faster surface cooling. The updated surface parametrization has profound impacts on parametrized processes in both regimes. However, only modelled temperatures in the vSBL are impacted substantially, whereas more efficient surface cooling in the wSBL is compensated by an increased turbulent heat transport within the boundary layer. This study demonstrates the utility of individual tendencies for understanding process-related differences between model configurations and emphasizes the need for model studies to distinguish between the wSBL and vSBL for reliable model verification. Article in Journal/Newspaper Sodankylä Météo-France: HAL Boundary-Layer Meteorology 186 2 373 397